Метафизика опыта. Книга II. Позитивная наука - страница 30

Шрифт
Интервал


Корни возникают в алгебре в процессе извлечения так называемых корней из чисел, которые таким образом ipso facto рассматриваются как силы; и корни, и силы используются в алгебре как общие термины для обозначения предполагаемых результатов определенных процессов вычислений. Под силами числа понимаются числовые результаты, которые получаются при умножении этого числа на само себя любое заданное число раз, например, 2 x 2 = 4; 4 x 2 = 8; 8 x 2 = 16 и так далее; где 4 – это вторая сила (или квадрат) 2, записываемая как 2>2; 8 – это третья сила (или куб), записываемая как 2>3; 16 – это четвертая сила, записываемая как 2>4. Обратный этому процесс – извлечение корня. Он состоит в том, чтобы найти, какое число, умноженное определенное количество раз на само себя, даст то число, квадратный, кубический, четвертый, пятый и т. д. корень которого требуется. Но здесь возникает трудность, обусловленная, как обычно бывает в таких случаях, предположением, а именно предположением, что каждое данное число – это сила. Ибо, хотя нам нетрудно возвести любое данное число в любую заданную силу путем умножения, из этого отнюдь не следует, что мы можем довести до конца обратный процесс извлечения корня из любого данного числа. Это обязательно следует только в случае тех чисел, которые ранее были достигнуты прямым процессом. Мысль о том, что все данные числа являются производными от корней, а также просто числами, возникла в результате обобщения успешных примеров извлечения корней и, следовательно, ожидания успеха в тех случаях, когда в действительности можно получить лишь воображаемые результаты. То, что эти два процесса обратны друг другу по виду, не означает, что они одинаково применимы к любому данному числу.

Поэтому во всех случаях извлечения корня, когда данное число, корень из которого требуется извлечь, не является заведомо целым, перед нами не простой процесс вычисления, а проблема, проблема, заключающаяся в том, чтобы найти, имеет ли данное число корень или нет. Из того, что в задаче предлагается найти корень из данного числа, не следует, что искомый корень может быть найден. Например, «число точных квадратов бесконечно; но в любых заданных пределах существует гораздо больше чисел, не имеющих точных квадратных корней, чем точных квадратов»