Метафизика опыта. Книга II. Позитивная наука - страница 38

Шрифт
Интервал


Переходя от уравнений как общих формул к их интерпретации в конкретных случаях, я взял следующее из примеров «замены цифр буквами», приведенных в статье «Алгебра» в Британской энциклопедии; отчасти потому, что оно показывает, как в алгебре используются символы, обозначающие ничто, 0, называемый нулем, и бесконечность, co, :

«Если a = ½, b = ⅓, c = ¼, x = 0, то найдите значение

a>2 – b>2/x – b>2 – c>2/x>2

Первый член бесконечен, а второй бесконечно больше первого, так как x>2 = x * x. Ответ: -∞».14

Нуль, или 0, и бесконечность, или ∞, используются здесь точно так же, как если бы они были реальными величинами. Логическое обоснование этого, как я полагаю, двояко: (1) в вычислениях мы всегда, по предположению, имеем дело с количеством или числом, и никогда – с чем-то, что не является количеством или не числом, и (2) место, в котором или точка, в которой появляется количество или число, в вычислительных операциях всегда определяет его значение. Теперь ноль, или 0, – это место или точка посередине между положительными, или +, и отрицательными, или -, величинами. Как алгебраическая величина он больше любого минуса или отрицательного значения. Аналогично с бесконечными величинами, или ∞. Одна из них может быть больше или меньше другой, в зависимости от места, которое они соответственно занимают в вычислениях, с помощью которых к ним приходят. Обоснованность этого утверждения основывается на двойном характере, отмеченном выше, как присущем всем числам, (1) как акту счета, (2) как единице или группе единиц, которые подсчитываются. Ноль, как подсчитанное количество, означает отсутствие числового содержания в определенном месте, полученном при вычислении, то есть в серии актов счета, как, например, при вычитании (скажем) 9 из 9; бесконечность, как подсчитанное количество, положительное или отрицательное, означает наличие числового содержания, превышающего любое поддающееся определению содержание, в определенном месте, полученном аналогичным образом, как, например, при умножении 0 на 0 (x на x) в приведенном выше примере.

Поэтому нуль в числе и нуль количества в континуумах, одинаково обозначаемые 0, следует тщательно отличать от логического отрицания или противоречия числа или количества, как способов восприятия вообще. Реальное существование чисел или величин в смысле мест или точек в серии актов счета и, следовательно, их возможное существование в виде содержания, находящегося в этих местах или на них, обеспечивается самим актом счета или вычисления, поскольку он неотделим от него. Точно так же алгебраическую концепцию бесконечности, или оо, как способной к степеням сверх степеней, к которой приходят путем вычисления, следует тщательно отличать от той бесконечности, которая относится к определенным способам количества (хотя и не к числу) как способам восприятия вообще; я имею в виду время и пространство, поскольку они являются сущностями восприятия.