В соответствии с больцмановским распределением по энергиям лишь незначительная часть молекул при 10 млн. К. имеет энергию, сравнимую со средней для температуры 400 млн. К. Однако высокое давление в активной зоне (порядка 10>14 Па) эквивалентно повышению температуры примерно на 10 млн. К., что способствует ускорению реакций синтеза.
Шансы осуществить термоядерный синтез в земных условиях связаны с использованием дейтерия и трития. По оценочным данным для инициации этой реакции температура должна быть на уровне 100 млн. К.
На выходе образуется гелий (>4Не), нейтрон >1𝞟 и выделяется 17,6 МЭВ энергии:
None+ →+17,6 Мэв.>2D>3T>4Не+>1 𝞟
Около 80% энергии приходится на кинетическую энергию нейтрона, который приобретает скорость около 5 · 10>7 м/сек, остальное передается гелию, сообщая ему скорость примерно 1,3 ·10>7 м/сек.
Дейтерий можно извлекать из воды, где его содержится в 6500 раз меньше водорода.
Трития в природе не существует, поскольку он является радиоактивным изотопом водорода с периодом полураспада 12 лет. Он может быть получен облучением лития нейтронам:
None →+>6L>2+>1п>3T>4He.
В природном литий содержится 7.4% >6L>2>I, остальное приходится на >7L>2>I.
Литий является лимитирующим сырьем для термоядерной энергетики, использующей тритий. При осуществлении реакции (>2D+>2D) можно получить энергию в 100 млн. раз больше, чем при сжигании всех запасов органического топлива.
Удельный расход термоядерного топлива является самый минимальным при выработке тепловой энергии, причем в этом отношении имеется преимущество перед ядерным топливом.
Так, для получения 1 млн. квт•час энергии необходимо затратить 10,7 г. дейтерий – тритиевой смеси; 44;3 г. >235U (в 4,1 раза больше) и 123 тн. условного топлива (теплотворная способность 29,3·10>6 дж/кг).
2. Обескураживающая особенность термоядерного реактора типа токамак
В этой системе смесь дейтерия с тритием загружается в тороидальную камеру при достаточно низком давлении. Нагрев производится индукционным способом. В проводящей плазме от индуктора возбуждается ток порядка миллиона ампер. За счет джоулевых потерь плазму разогревают до рабочих температур.
С помощью магнитного поля, создаваемого сверхпроводящей магнитной системой, расположенной снаружи камер, плазма отжимается к оси. При этом устраняется непосредственный контакт высокотемпературной плазмы со стенкой. Полностью ионизированная плазма не излучает, как обычные газы и материалы при невысоких температурах, однако в конкретном случае характеризуется тормозным излучением ядер, поскольку их скорость поперек оси камер гасится магнитным полем.