3. Функции активации: Нелинейные функции, применяемые к выходу каждого нейрона, позволяющие сети моделировать сложные нелинейные зависимости.
4. Градиентный спуск: Метод оптимизации, используемый для минимизации функции потерь путем итеративной корректировки параметров модели.
Обработка естественного языка (NLP)
Обработка естественного языка (Natural Language Processing, NLP) – это область ИИ, фокусирующаяся на взаимодействии между компьютерами и человеческим языком. NLP позволяет машинам понимать, интерпретировать и генерировать человеческий язык в полезной форме.
Основные задачи NLP включают:
1. Анализ настроений (Sentiment Analysis): Определение эмоциональной окраски текста.
2. Машинный перевод: Автоматический перевод текста с одного языка на другой.
3. Распознавание именованных сущностей (Named Entity Recognition): Идентификация и классификация именованных сущностей (имена людей, организаций, локаций и т.д.) в тексте.
4. Суммаризация текста: Создание краткого резюме большого текста.
5. Ответы на вопросы (Question Answering): Автоматическое генерирование ответов на вопросы на естественном языке.
6. Генерация текста: Создание связных и осмысленных текстов на заданную тему.
Современные NLP-системы часто используют архитектуру трансформеров, впервые представленную в статье «Attention Is All You Need» (2017). Трансформеры используют механизм внимания (attention mechanism), позволяющий модели фокусироваться на различных частях входных данных при генерации выхода. Это значительно улучшило качество обработки последовательностей, особенно длинных текстов.
Ключевые концепции в современном NLP:
1. Контекстные эмбеддинги: В отличие от статических word embeddings, контекстные эмбеддинги (например, BERT) учитывают контекст, в котором используется слово.
2. Transfer Learning: Использование предобученных на больших объемах данных моделей для решения специфических задач с меньшим количеством размеченных данных.
3. Few-shot и Zero-shot Learning: Способность модели выполнять задачи с минимальным количеством примеров или вообще без них.
4. Многоязычные модели: Модели, способные работать с множеством языков одновременно.
Токенизация и векторное представление данных
Токенизация – это процесс разбиения текста на более мелкие части, называемые токенами. Токены могут представлять собой слова, части слов или даже отдельные символы. Токенизация является важным шагом предобработки в NLP, так как она преобразует сырой текст в формат, который может быть обработан машинным обучением и нейронными сетями.