= ||
a>i j || и
B = ||
a>i j || считаются равными, если они имеют одинаковые размеры и их соответствующие матричные элементы попарно равны:
для любых допустимых значений индексов i и j.
1.2. Умножение матрицы на число
Умножать на число можно матрицу любого размера. При умножении матрицы A на число λ каждый ее матричный элемент умножается на это число:
для любых допустимых значений индексов i и j.
В результате получим новую матрицу В.
В результате получим матрицу 3A.
Вынесение общего можителя за знак матрицы.
Операция сложения определена только для матриц одинаковых размеров. Результатом сложения матриц A = || a>i j || и B = || b>i j || является матрица C = || c>i j ||, элементы которой равны сумме соответствующих матричных элементов:
Формула операции сложения.
Результат сложения двух матриц.
Складывать (и вычитать) можно матрицы только одного размера!
Результат сложения двух матриц с учетом правила A +0 = A.
Формула вычитания двух матриц.
1.5.Умножение строки на столбец
Пусть А = – матрица-строка размера 1×n, и пусть В – матрица-столбец размера n×1. (Иначе говоря, пусть число элементов в строке матрицы A совпадает с числом элементов в столбце матрицы B.)
Тогда произведением AB называется число, равное сумме попарных произведений соответствующих матричных элементов:
Формула является правилом умножения строки на столбец.
Если матрица A содержит m строк, а матрица B – n столбцов, то произведение AB представляет собой m×n матрицу, i,j-ый элемент которой вычисляется по правилу умножения i-ой строки матрицы A