Нейросеть на пальцах: как работает ИИ и как его использовать? - страница 7

Шрифт
Интервал


Нейросети становятся всё более универсальными инструментами, и знание того, как они принимают решения, помогает нам использовать их возможности на полную мощность. Тот, кто начинает изучать нейросети сейчас, сможет в будущем принимать решения на основе их рекомендаций и находить новые точки роста в своей деятельности.

Глава 4: Обучение нейросети на ошибках

Почему ошибки важны для нейросети?

Ошибки – неотъемлемая часть процесса обучения нейросети. Они помогают сети понять, как ей нужно скорректировать свои действия, чтобы в будущем давать более точные результаты. Обучение нейросети – это основа её работы, так как именно благодаря исправлению ошибок сеть «учится» и улучшает свою точность.

Как сеть понимает, что она ошиблась?

Когда сеть выполняет задачу, она выдаёт ответ, который затем сравнивается с правильным решением. Например, если нейросеть анализирует изображения и должна определить, что на картинке изображена кошка, но вместо этого предполагает, что это собака, значит, она совершила ошибку.

Цель сети – минимизировать эту ошибку, чтобы её предсказания были как можно ближе к правильным ответам.

Как работает обратное распространение?

Когда ошибка найдена, сеть должна понять, что именно она сделала неправильно, и скорректировать свои параметры, чтобы избежать этой ошибки в будущем. Для этого используется обратное распространение:

Процесс обратного распространения ошибки:

Вычисление на выходе сети. Например, если сеть должна была распознать кошку, но ошиблась, её результат сравнивается с правильным ответом, чтобы найти величину ошибки.

Передача информации назад через каждый слой. Ошибка делится между слоями, начиная с выходного, чтобы каждый слой получил свою долю ответственности.

Корректировка весов нейронов. На основе полученной информации сеть корректирует значения весов, что позволяет ей делать более точные предсказания в следующий раз.

Эти шаги повторяются множество раз, что позволяет сети постепенно улучшать свои результаты.