YandexGPT 3 Pro: «Искусственный интеллект (ИИ) – это свойство интеллектуальных систем выполнять творческие функции, традиционно считающиеся прерогативой человека. Это наука и технология создания интеллектуальных машин, особенно компьютерных программ, способных выполнять задачи, требующие человеческого интеллекта, например, решение сложных проблем, обучение на основе опыта, понимание естественного языка и способность адаптироваться к новым ситуациям. ИИ связан с использованием компьютеров для понимания человеческого интеллекта, но не ограничен биологически правдоподобными методами.»
GigaChat: «Искусственный интеллект (ИИ) – это свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека. Это наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. Искусственный интеллект связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами. Существующие на сегодня интеллектуальные системы имеют довольно узкие области применения. Искусственный интеллект был основан как академическая дисциплина в 1956 году и за прошедшие с тех пор десятилетия пережил несколько волн оптимизма».
Мне же, как человеку, ближе самое простое и понятное определение: ИИ – это любой математический метод, позволяющий имитировать человеческий или другой интеллект из естественной природы.
То есть ИИ – это огромное количество решений, в том числе и примитивные математические алгоритмы, и экспертные системы на базе правил.
И хотя данное направление родилось где-то в 50-х годах 20 века, нас в первую очередь интересует то, что мы понимаем под этим сегодня, в начале 2020-х. И тут есть три основных направления.
1. Нейросети – математические модели, созданные по подобию нейронных связей мозга живых существ. Собственно, мозг человека – это суперсложная нейросеть, ключевая особенность которой заключается в том, что наши нейроны не ограничиваются состояниями «включен / выключен», а имеют гораздо больше параметров, которые пока не получается оцифровать и применить в полной мере.
2. Машинное обучение (ML) – статистические методы, позволяющие компьютерам улучшить качество выполняемой задачи с накоплением опыта и в процессе дообучения. Это направление известно с 1980-х годов.