Во-вторых, следует изучить существующие технологии искусственного интеллекта, которые применяются в роботизированных системах для аграрного сектора, с акцентом на их функциональные возможности, а также на потенциальные перспективы повышения производительности в условиях агропредприятий. Эта задача требует анализа технологий машинного зрения, алгоритмов глубокого обучения и программных платформ для управления роботами, включая их адаптацию под российские условия. Ожидается, что результатами решения этой задачи станут рекомендации по выбору наиболее перспективных ИИ-технологий для решения задач автоматизации аграрного производства.
Следующая задача – оценка технических и экономических характеристик существующих роботизированных систем для сбора и сортировки сельхозпродукции. В ходе выполнения этой задачи будет проведен анализ производительности, стоимости и сроков окупаемости таких систем, а также выявлены их преимущества и ограничения в сравнении с традиционными методами. Особое внимание будет уделено адаптации этих технологий для условий российского сельского хозяйства, где характерные климатические и экономические условия могут повлиять на эффективность эксплуатации роботов.
Важной задачей исследования является проведение сравнительного анализа затрат на внедрение и эксплуатацию роботизированных систем в агропромышленных комплексах разных стран, с целью определения условий, при которых применение таких технологий становится экономически оправданным. Особое внимание будет уделено сравнению производственных затрат и уровню автоматизации в агропредприятиях России, США и Европы. На основе этого анализа будет разработан методический подход, позволяющий оценивать экономическую эффективность внедрения интеллектуальных роботов для различных агрокультур и климатических регионов России.
Далее, предстоит разработать методологические подходы к оценке эффективности внедрения роботизированных систем в аграрные хозяйства России. Для этого необходимо учесть как климатические и ресурсные, так и экономические условия российских регионов, что позволит предложить более точные рекомендации по интеграции роботов в производственные процессы. Эти подходы будут основаны на количественных данных и ориентированы на экономическую оценку рентабельности внедрения роботов, что поможет создать критерии и параметры, необходимые для принятия решений на уровне агропредприятий.