1. Что такое обработка естественного языка?
Обработка естественного языка – это область искусственного интеллекта, которая изучает, как машины могут понимать, интерпретировать и генерировать текст и речь на человеческом языке. В отличие от традиционных алгоритмов, которые работают с числовыми данными, NLP пытается обработать данные в виде текста, который часто бывает неструктурированным и многозначным.
Задачи NLP включают:
– Распознавание речи: Преобразование звуковых сигналов в текст (например, голосовые помощники, такие как Siri или Alexa).
– Анализ текста: Определение структуры текста, распознавание смысла слов и предложений.
– Перевод текста: Перевод текста с одного языка на другой.
– Генерация текста: Создание текста, который звучит естественно и логично, например, создание отчетов, диалоговых систем или генерация ответов на вопросы.
2. Как AI «понимает» текст?
Чтобы понять, как AI обрабатывает текст, важно рассмотреть несколько этапов обработки и ключевых технологий, которые используются для выполнения задач NLP.
Предобработка текста. Прежде чем AI сможет «понять» текст, его нужно подготовить. Это включает в себя несколько шагов:
– Токенизация: Разбиение текста на отдельные элементы, такие как слова, предложения или символы. Например, в предложении «Идет дождь» токены будут: «Идет» и «дождь».
– Удаление стоп-слов: Это часто встречающиеся слова (например, «и», «в», «на»), которые не несут важной информации и могут быть удалены из текста для ускорения анализа.
– Лемматизация: Преобразование слова в его базовую форму. Например, «бегать», «бегаю» и «бежал» могут быть приведены к одной лемме – «бег».
Представление слов. Чтобы AI мог работать с текстом, слова и фразы должны быть преобразованы в числовые представления. Одним из популярных методов является векторизация слов:
– Мешок слов (Bag of Words, BoW): Это простая техника, при которой каждый текст представляется как набор уникальных слов, без учета их порядка.
– Word2Vec: Более сложный метод, который обучает нейросети представлять слова в виде плотных векторов (многомерных числовых представлений), которые отражают их значение и контекст.
– GloVe (Global Vectors for Word Representation): Метод, похожий на Word2Vec, но с фокусом на глобальной статистике, что позволяет лучше улавливать связи между словами на основе их общего контекста.