The representation of these expressions becomes more pronounced already for three reaction products. Most often, in this case, a moment is obtained when the particles are divided into two groups – light and heavy groups. For the above reasons, the light group receives most of the total energy and such an algorithm is stored in the appropriate way.
So, if the amount of the outgoing particle tends to a certain large number (11), then their energies will be distributed in an inversely proportional manner to their mass (12), taking into account the yield of the reaction (13) for such (11).
After the kinetic energy of each of the reaction results is determined, it becomes necessary to define such a concept as the nuclear effective cross section of a nuclear reaction (14).
This concept finds its origin in quantum physics, according to the laws of which, even if a particle does not fall into the physical corpuscular area of the nucleus, it can be captured by it as a result of its low velocity, due to which the de Broglie wave of the directed beam grows (15).
In this case, according to the theory of relativity, (16) is used to calculate the momentum of a directed particle, taking into account the fact that the nuclear effective cross section, as well as all the functions following it, are determined on a time scale after the beam overcomes the Coulomb barrier, from where both the momentum and the velocities are taken directly second, given the factor that due to an increase in the nuclear effective cross-section, for a short time, the nuclear forces together with the Coulomb barrier increase in size.
Where the velocity of the directed particle from the kinetic energy is calculated by deducing through (17).
As a result of the calculations carried out, it was possible to determine the nuclear effective cross-section, which varies in square meters, but a special unit was introduced for it – barn, equal to 10>—28 m>2. But it is worth pointing out some peculiarity in the definition that the value (14) is the reduced nuclear effective cross-section, which for practical value is translated by (19), where the constant (18) is used, which is a dimensionless quantity, which is expressed through the ratio of the practical experimentally determined value of the nuclear effective cross-section of the most commonly used nuclear reaction – the decay reaction uranium equal to 584 barns to the theoretical basis, equal to 3 396 747 21529 barns.