Все науки. №2, 2024. Международный научный журнал - страница 18

Шрифт
Интервал


24. Alayafi Hassan Ali, Alruwaili Mubarak, Aljumah Talal Khalid, Alshehri Alid, Alrasheed Deema, Alanazi Muhannad Faleh AlRuwaili, Raed, Ali Naif H., Albarrak Anas Mohammad, AlRashdi Barakat M., Taha Ahmed E. Mycoplasma pneumoniae and Schistosoma mansoni co-infection in a young patient with extensive longitudinal acute transverse myelitis. Journal of Infection in Developing Countries. 2022. Volume 16, Chapter 12, 1933 – 1938 pp.

25. Pelloni Sandro, Rochman Dimitri. Adjustment of JEFF-3.3 data for U-235 and Pu-239 in the fast, non-resonant energy range. Annals of Nuclear Energy. Volume 177. 2022. No. 109296.

26. Liu Fu-Long, He Chuang-Ye, Wang Hao-Ran, Bo Nana, Wu Di, Ma Tian-Li, Yang Wan-Sha, Wei, Ji-Hong, Wang Zhi-Qiang, Liu Yi-Na, Song Ming-Zhe, Liu Yun-Tao. Thick-target yield of 17.6 MeV $\gamma$ ray from the resonant reaction >7Li (p, γ) >8Be at E>p = 441 keV. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. 2022. Volume 529, 56 – 60 pp.

DEVELOPMENT OF PRICE ACTION PREDICTION ALGORITHMS IN PYTHON

UDK: 510.9

Xolmatova Nilufarxon Jahongir qizi


Student of the TUIT xolmatovan44@gmail.com

Abdurasulova Dilnoza Botirali kizi

assistant of the Fergana branch of the TUIT


abdurasulovad1@gmail.com

Abstract. This article explores the development of advanced price action prediction algorithms using Python. The study focuses on employing machine learning techniques to forecast future price movements in financial markets. Through extensive backtesting and evaluation, the effectiveness of these algorithms is assessed. The implementation is carried out in Python, utilizing popular libraries such as Pandas, NumPy, and Scikit-learn. The research aims to contribute to the field of algorithmic trading by providing insights into the design and performance of predictive models for price action.

Keywords: Algorithmic trading, Price action prediction, Machine learning, Python, Financial markets.

Introduction

In the rapidly evolving landscape of financial markets, algorithmic trading has gained prominence. This section discusses the significance of price action prediction algorithms and their role in facilitating informed trading decisions. It also outlines the objectives of the study, emphasizing the need for accurate and reliable forecasting models. The introduction provides a contextual background on algorithmic trading and the challenges associated with predicting price movements.