Алгоритмы рекомендаций как способ автоматической обработки и сортировки информации начали применяться в 1990-х годах. Одним из первых примеров стала система сортировки электронной почты – муторное занятие и по сей день. Уже в 1992 году инженеры научно-исследовательского центра компании Xerox в Пало-Альто (более известного как PARC) начали утопать в почте. Они пытались решить проблему “растущего использования электронной почты, в результате которого пользователей захлестывает колоссальный поток входящих документов”, как написали Дэвид Голдберг, Дэвид Николс, Брайан Оки и Дуглас Терри в статье 1992 года. (Они даже не подозревали, с каким объемом цифровой коммуникации мы столкнемся в XXI веке.) Их система фильтрации электронной почты под названием Tapestry использовала два вида алгоритмов, работавших совместно: “фильтрация на основе содержания” и “совместная фильтрация”. Первый, который уже применялся в нескольких системах электронной почты, оценивал текст писем – например, если вы хотели установить приоритет по слову “алгоритм”. Второй, более инновационный метод, основывался на действиях других пользователей. При определении приоритета конкретного письма учитывалось, кто его открыл и как на него отреагировал. В статье говорилось:
Люди помогают друг другу осуществлять фильтрацию, записывая свои реакции на прочитанные документы. Например, такая реакция может уведомлять, что документ показался особенно интересным (или особенно неинтересным). Подобные реакции, называемые в общем случае аннотациями, могут быть доступными фильтрам других людей.
В Tapestry использовались “фильтратор”, запускавший повторяющиеся запросы по набору документов, “ящичек”, собиравший материалы, которые могли заинтересовать пользователя, и “оценщик”, который устанавливал приоритеты и категоризировал документы. Концептуально это очень похоже на современные алгоритмические ленты: цель Tapestry заключалась в том, чтобы выводить на первый план контент, который с наибольшей вероятностью окажется важен для пользователя. Однако подобная система требовала гораздо больше предварительных действий со стороны пользователей: им приходилось писать запросы, по которым система определяла, что они желают увидеть, основываясь либо на контенте, либо на действиях других пользователей. Остальным пользователям в системе также приходилось выполнять весьма целенаправленные действия, помечая материал как важный или нерелевантный. Для подобной схемы требуется небольшая группа людей, которые уже знают друг друга и понимают, как их сообщество взаимодействует с электронной почтой – например, вы уже осведомлены, что Джефф отвечает только на особо важные письма, и поэтому вы хотите, чтобы ваш фильтр выводил наверх все письма, на которые отвечает Джефф.