Мир-фильтр. Как алгоритмы уплощают культуру - страница 24

Шрифт
Интервал


. “Знание – сила”, – писал Фрэнсис Бэкон в XVI веке, однако в эпоху интернета, возможно, еще больше преимуществ дает сортировка знаний. Информацию сегодня найти легко; гораздо сложнее разобраться в ней и понять, какие сведения полезны.

Пейдж и Брин хотели, чтобы их система была относительно нейтральной и оценивала каждый сайт исключительно с точки зрения его релевантности. Задача алгоритма заключалась в предоставлении пользователю наилучшей информации. Ориентирование поиска на определенный сайт или бизнес испортило бы результаты. “Мы полагаем, что поисковые системы, финансируемые за счет рекламы, будут по своей сути отдавать предпочтение рекламодателям и не учитывать нужды потребителей”, – писали предприниматели в 1998 году. И тем не менее в 2000 году они запустили Google AdWords – пилотный продукт компании для рекламодателей (сейчас он называется Google Ads). Забавно читать их критику сегодня, когда именно реклама обеспечивает подавляющую часть доходов компании – более 80 % в 2020 году. Поскольку алгоритм PageRank привел в поисковую систему Google миллиарды людей, компания также получила возможность отслеживать, что ищут пользователи, и таким образом продавать рекламодателям позиции в выдаче при определенных поисковых запросах. Как и результаты поиска, рекламные объявления, показываемые пользователю, тоже определяются алгоритмом. И эта реклама, построенная на поисковом алгоритме, сделала Google настоящим левиафаном.

К началу 2000-х годов наш цифровой опыт уже определялся алгоритмической фильтрацией. Сайт Amazon еще в 1998 году начал использовать совместную фильтрацию при рекомендациях товаров клиентам. Однако система компании не пыталась обнаруживать сходные профили пользователей, чтобы приблизительно оценивать вкусы, как это делала Ringo; она определяла товары, которые часто покупают вместе, – например, погремушка и детская бутылочка. Статья 2017 года, созданная одним из сотрудников Amazon, описывает подобные предложения на сайте:

На главной странице выделялись рекомендации, основанные на ваших прошлых покупках и просмотренных товарах… Корзина рекомендовала добавить другие товары – возможно, спонтанные покупки, которые делаются в последнюю минуту, а возможно, дополнения к тому, что вы уже рассматривали. По окончании заказа появлялись дополнительные рекомендации, предлагающие заказать товары позже.