Все науки. №8, 2024. Международный научный журнал - страница 9

Шрифт
Интервал


Keywords: Rutherford scattering, inelastic scattering, beam, cosmic radiation, alpha particle.

Современные технологии солнечной энергетики играют ключевую роль в переходе к устойчивым источникам энергии. Однако, несмотря на их широкое применение, существует важный аспект, который требует более глубокого изучения – взаимодействие космического излучения с солнечными батареями [1]. Космическое излучение включает в себя поток высокоэнергетических частиц, таких как протоны и тяжелые ядра, которые могут негативно воздействовать на материалы солнечных панелей. Это взаимодействие, в том числе с кластером неупругого рассеяния, где усилен вариант ионизационного характера может приводить к деградации их характеристик, снижению эффективности преобразования солнечной энергии и сокращению срока службы.

Среди актуальных сторон настоящего исследование важно отметить, что проведение исследований поможет разработать более устойчивые солнечные батареи, которые смогут эффективно работать в условиях воздействия космического излучения. Это особенно важно для спутников и других космических объектов, где надежность источника энергии критична. Также, наряду с вышеуказанным, исследования позволят выявить материалы, которые менее подвержены воздействию космического излучения [2—3; 5]. Понимание взаимодействий космического излучения с солнечными батареями поможет в создании точных моделей, что, в свою очередь, улучшит проектирование и тестирование новых технологий.

При рассмотрении в глобальном плане, совершенствование солнечных технологий не только повысит эффективность работы в космосе, но и может найти применение на Земле, особенно в регионах с высоким уровнем радиации. Исследования в области взаимодействия космического излучения и солнечных батарей имеют большое значение не только для космической индустрии, но и для устойчивого развития энергетических технологий на Земле [4—6]. Инвестиции в эти исследования могут привести к значительным достижениям в области возобновляемой энергии и повысить надежность солнечных систем в различных условиях эксплуатации. Исходя из чего можно констатировать, что настоящий вопрос является актуальным.

Исследование осуществляется с учётом рассмотрения ситуации неупругого взаимодействия с атомами кристаллического кремния альфа-частиц, имеющиеся в составе космического излучения, как это показывает экспериментальное наблюдение [7—8]. Для изучения взаимодействия, использована модель анализа при помощи рассеяния Резерфорда [5—6; 7]. При этом используются эмпирически определённые энергии более 10 МэВ в масштабе галактических космических лучей, но не более 100 МэВ.