Нейросети: создание и оптимизация будущего - страница 10

Шрифт
Интервал


Преобразование данных для нейронной сети

Перед подачей в нейронную сеть данные обычно проходят предварительную обработку, включающую преобразование в числовой формат, нормализацию и масштабирование. Нормализация, например, может быть полезной, чтобы значения входных данных находились в одном диапазоне, что помогает модели обучаться быстрее и избегать проблем, связанных с сильно различающимися масштабами характеристик. После нормализации данные превращаются в векторы или матрицы, подходящие для обработки в сети, где каждый элемент легко интерпретируется узлами сети. Эти преобразования делают данные совместимыми с архитектурой ИНС, которая затем может анализировать их на каждом слое, выявляя закономерности и закономерности.

Таким образом, преобразование данных в числовые векторы и матрицы является критически важным шагом, который делает информацию доступной для ИНС, позволяя ей эффективно работать с разнообразными типами входных данных, будь то изображения, текст или временные ряды.

Когда вектор или матрица поступает в сеть, каждый элемент умножается на веса и проходит через функцию активации. Эти операции продолжаются через слои сети, пока модель не выведет результат на выходе.


1.3. Принципы работы нейронных сетей

Нейронные сети – это алгоритмы, которые пытаются имитировать процесс принятия решений в мозге, обрабатывая данные, используя ряд искусственных «нейронов». Каждый нейрон выполняет простые операции, но при объединении в многослойную структуру сеть может решать сложные задачи. Основной принцип нейронной сети – это прохождение данных через сеть нейронов, которые организованы в слои (входной, скрытые и выходной). На каждом этапе информация преобразуется, и сеть обучается корректировать свои внутренние параметры, чтобы уменьшить ошибки на выходе.


Функции активации: сигмоид, ReLU, tanh и их особенности

– Сигмоидная функция: Сигмоидная функция активации сжимает входные значения в диапазон от 0 до 1, что удобно для задач, где требуется вероятностная интерпретация результата (например, бинарная классификация). Она имеет плавный S-образный вид. Однако, когда значения на входе очень большие или маленькие, сигмоид сильно сглаживает значения, делая градиент почти равным нулю. Это приводит к проблеме затухающих градиентов, что замедляет обучение.