1.3. Важность технологий RAG (Retrieval-Augmented Generation) для будущего моделей
Retrieval-Augmented Generation (RAG) – это подход, при котором языковая модель получает доступ к внешним источникам данных. Вместо того чтобы полагаться только на запомненные знания, модель активно запрашивает и использует актуальную информацию в реальном времени.
Технология RAG играет ключевую роль в будущей эволюции языковых моделей:
Повышение точности: Вместо запоминания устаревшей информации модель использует актуальные данные.
Масштабируемость: Объем знаний не ограничен параметрами модели.
Снижение риска галлюцинаций: Модель опирается на внешние источники, уменьшая вероятность генерации ошибочной информации.
DeepSeek успешно использует RAG, чтобы предложить пользователям наиболее точные и релевантные ответы, применяя RL для оптимизации запросов и выбора информации.
Заключение главы
Эта глава подводит читателя к пониманию, почему DeepSeek является не просто новым участником на рынке языковых моделей, но и значительным шагом вперед. Используя преимущества RL и RAG, DeepSeek задает новый стандарт для моделей следующего поколения.
Глава 2. Технологическая основа DeepSeek
2.1. Архитектура модели
DeepSeek использует усовершенствованную архитектуру на основе многоголовой скрытой внимательности (MLA), что позволяет значительно повысить производительность модели. Основные аспекты MLA в DeepSeek:
Разделение внимания: Каждая "голова" фокусируется на разных аспектах данных – семантике, синтаксисе или контексте. Это улучшает способность модели улавливать глубокие связи внутри данных.
Параллельная обработка: MLA реализует одновременное вычисление для каждой головы, что сокращает время обработки и делает модель масштабируемой.
Инновации MLA: DeepSeek интегрирует оптимизацию вычислений за счет игнорирования несущественных данных (аналог сжатия контекста). Эта технология позволяет снизить затраты на обучение и уменьшить энергопотребление, оставаясь при этом конкурентоспособной.
В сравнении с классическими моделями, такими как GPT и BERT, DeepSeek демонстрирует:
Более низкие затраты на вычисления, благодаря улучшенной оптимизации MLA.
Способность к обучению на меньшем объеме данных без потери точности.
Лучшую адаптацию к задачам, требующим актуальной и контекстной информации.