current_segment = {"title": None, "content": ""}
for line in lines:
if line.startswith("#"): # Заголовки
if current_segment["title"]:
segments.append(current_segment)
current_segment = {"title": line.strip("# "), "content": ""}
else:
current_segment["content"] += line + " "
if current_segment["title"]:
segments.append(current_segment)
return segments
text = """
# Основы когнитивного программирования
Когнитивное программирование – это подход…
# Модель мышления команд
Описание модели…
"""
segments = segment_text(text)
print(segments)
```
Результат: список сегментов, каждый из которых можно сохранить как отдельный элемент базы знаний.
1.4.5 Категоризация данных
Пример: Создание категорийного справочника
Организуйте данные по ключевым темам, чтобы упростить поиск и обработку.
```json
{
"categories": {
"Теория": ["Основы когнитивного программирования", "Принципы командного мышления"],
"Методологии": ["Модель мышления команд"],
"Кейсы": ["Внедрение когнитивных моделей"]
}
}
```
Этот справочник можно использовать для фильтрации данных в интерфейсе тренажера.
1.4.6 Верификация данных
Пример: Проверка на полноту и точность
После создания базы знаний проведите автоматизированную проверку данных, чтобы выявить ошибки и пропуски.
```python
def verify_data(data):
for item in data:
if not item.get("title") or not item.get("content"):
print(f"Ошибка: Не хватает данных в элементе {item}")
if "keywords" not in item or not item["keywords"]:
print(f"Предупреждение: Отсутствуют ключевые слова в {item['title']}")
# Пример проверки
data = [
{"title": "Основы когнитивного программирования", "content": "Описание…", "keywords": []},
{"title": "Модель мышления команд", "content": "Описание модели…"}
]
verify_data(data)
```
Этот скрипт позволяет находить неполные записи, чтобы устранить их до запуска системы.
Эти практические примеры помогут эффективно организовать, сегментировать и верифицировать данные для создания базы знаний, полностью готовой к интеграции с когнитивным тренажером.