Неполное понимание целевой аудитории
Необходимость в понимании целевой аудитории часто игнорируется, что может приводить к разработке алгоритмов, которые не соответствуют потребностям пользователей. Например, если задача – разработать рекомендательную систему для онлайн-торговли, но не выясняется, какие именно продукты интересуют целевую аудиторию, результаты размещения рекомендаций могут оказаться нерелевантными.
Рекомендация: Проводите опросы, проводите интервью и встречайтесь с представителями целевой аудитории до начала разработки. Выясните их потребности и предпочтения, чтобы формулировать посылы, основанные на реальных ожиданиях пользователей.
Пренебрежение качеством данных
Другой часто допускаемой ошибкой является игнорирование качества данных, на которых будет обучаться модель. Если задача сформулирована на основе некачественных данных, вероятность получения изолированного результата или неверных выводов возрастает. Например, если задача – предсказать кредитоспособность клиентов, но данные содержат ошибки или пропуски, это станет причиной неправильных рекомендаций по кредитованию.
Рекомендация: Перед началом работы по проекту проведите анализ качества данных. Используйте методы очистки данных и оцените, какие данные будут необходимы для успешного обучения модели. Важно обеспечить наличие качественного и актуального набора данных.
Неправильный выбор метрик
Некорректный выбор метрик для оценки успеха модели может скрыть реальные проблемы и дать ложные надежды. Например, если целью является уменьшение времени обработки заявок, но метрика включает только общий объем обработанных заказов, можно не заметить ухудшения скорости обработки индивидуальных заявок.
Рекомендация: Определите метрики, которые максимально точно отражают целевые результаты. Используйте несколько метрик для комплексной оценки успеха и убедитесь, что выбранные индикаторы действительно соотносятся с целевыми бизнес-результатами.
Ошибки в обратной связи
Ошибки в процессе сбора обратной связи могут привести к затягиванию разработки и избыточной доработке модели. Например, если в процессе тестирования модели один из участников команды не поделится своим мнением, это может привести к тому, что важные аспекты будут пропущены, а модель останется без учета критических замечаний.