Особым инструментом для обнаружения объектов является свёрточная нейронная сеть (CNN), предназначенная для обработки изображений. CNN использует слои свёртки для обработки особенностей изображения и слои подвыборки для уменьшения размерности, что облегчает процесс извлечения информации о каждом объекте. Например, применение предобученных моделей, таких как VGG16 или ResNet, может значительно ускорить обучение и повысить качество обнаружения. Практическое применение предполагает интеграцию таких моделей в системы, которые могут анализировать изображения в реальном времени.
Предположим, вы хотите создать систему для обнаружения людей на видеопотоке с камер наблюдения. Для этого вам понадобится набор данных с аннотированными изображениями и соответствующими охватами вокруг людей. Затем, используя алгоритм YOLO, вы сможете обучить модель, которая научится находить людей и определять их местоположение в кадре. Пример кода для выполнения такой задачи может выглядеть следующим образом:
import cv2
import numpy as np
# Загрузка предобученной модели YOLO
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] – 1] for i in net.getUnconnectedOutLayers()]
# Чтение и обработка изображения
img = cv2.imread("input.jpg")
height, width, channels = img.shape
# Подготовка изображения для обнаружения
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Обработка полученных результатов
for out in outs:
....for detection in out:
........scores = detection[5:]
........class_id = np.argmax(scores)
........confidence = scores[class_id]
........if confidence > 0.5:
............# Если обнаружен объект, показать его
............# … обработка вывода
Несмотря на значительный прогресс, область обнаружения объектов сталкивается с рядом проблем, таких как влияние освещения, частичное скрытие объектов, наличие нескольких объектов одного класса и сложные фоны, которые могут сбивать с толку модель. Кроме того, требования к точности и сложности моделей растут в связи с увеличением объёмов данных. Для преодоления этих трудностей активно исследуются методы, использующие увеличение данных, уменьшение размерности и улучшение архитектуры нейронных сетей.