1.1. Применение стали 12МХ в нефтегазовом оборудовании
Теплоустойчивыми называют стали, предназначенные для длительной эксплуатации при температурах до 600° C. Эти стали находят широкое применение в энергетических и нефтехимических установках. В условиях длительной работы под напряжением при высоких температурах теплоустойчивые стали должны обладать высокой стойкостью к ползучести, длительной прочностью, стабильностью свойств во времени и жаростойкостью. Достижение перечисленных свойств при экономичном легировании возможно благодаря использованию хромомолибденовых и хромомолибденованадиевых сталей перлитного класса.
Хромомолибденовые стали, такие как 12МХ, 15ХМ, 20ХМЛ и 15Х5М, с ферритно-перлитной структурой, применяются для работы при температурах 500—550° C. Хромомолибденованадиевые стали, например, 12Х1МФ, 15Х1М1Ф, 20ХМФЛ, 15Х1М1ФЛ и 12Х2МФСР, предназначены для эксплуатации при температурах 550—580° C. Более высокие жаропрочные свойства хромомолибденованадиевых сталей обусловлены не только стабилизацией карбидной фазы ванадием, но и применением упрочняющей термической обработки, обеспечивающей образование бейнитной структуры.
Сварка теплоустойчивых сталей сопровождается изменением свойств свариваемого металла, связанным с расплавлением и кристаллизацией при образовании шва, а также структурными изменениями и упругопластическими деформациями в околошовной зоне. Это приводит к физико-химической неоднородности сварных соединений и образованию местного сложнонапряженного состояния, что может ухудшить работоспособность и снизить эксплуатационную надёжность конструкций.
Металлургическая свариваемость теплоустойчивых сталей, определяемая их поведением при плавлении, металлургической обработке и последующей кристаллизации шва, не вызывает значительных осложнений. Современные технологии сварки и сварочные материалы обеспечивают необходимую стойкость швов к образованию горячих трещин и высокие характеристики их работоспособности, соответствующие требованиям, предъявляемым к основному металлу. Однако тепловая свариваемость может осложняться охрупчиванием металла из-за образования метастабильных структур в околошовной зоне, нагретой выше температуры Ас3, и разупрочнением в участках, нагретых в интервале температур Ас3 – температура отпуска стали. Образование хрупких структур (троостита, мартенсита) и суммирование напряжений, вызванных неравномерным нагревом и структурными превращениями, могут привести к потере пластичности металла и вызвать разрушение конструкций в процессе их изготовления. Для предотвращения образования холодных трещин необходимо использовать сопутствующий нагрев во время сварки, а в некоторых случаях – выдержку сварных соединений при определённой температуре после окончания сварки.