Промт инжиниринг - страница 2

Шрифт
Интервал


Как обучают модели?

Обучение происходит на огромных текстовых массивах, собранных из интернета. Алгоритм показывают часть текста и просят предсказать следующее слово. Если ответ неверен – происходит корректировка.

Так шаг за шагом модель учится находить паттерны, контексты, языковые зависимости и смысловые связи. Чем больше параметров у модели – тем точнее её предсказания.

Почему они называются «большими»? Потому что их обучают с помощью гигантских количеств данных, и они содержат миллиарды параметров. Это позволяет моделям эффективно обрабатывать текст, понимая не только отдельные слова, но и их отношения в длинных цепочках.

Например, фраза В лесу родилась могла бы продолжиться как странная история о медведе в костюме. Это технически корректно, но статистически маловероятно. Поэтому модель выберет вариант ёлочка, потому что он чаще встречался в обучающих данных.

Что важно знать о языковых моделях

Они не всегда дают одинаковый ответ. Один и тот же запрос может привести к слегка отличающимся результатам. Это заложено намеренно – элемент случайности делает поведение модели гибче.

Они не знают свежих событий. Например, ChatGPT-4 обучен на данных до 2021 года. Чтобы получить ответ по более свежей теме, необходимо включить контекст в сам запрос.

Они быстро развиваются. Помимо ChatGPT, существуют и другие модели: LLaMA, Alpaca, Vicuna и многие другие. Их возможности постоянно растут, и методы работы с ними – тоже.

Как использовать это знание

Понимание того, что модель – это «предсказатель следующего слова», помогает формулировать запросы эффективнее. Если вы дадите модели точную и последовательную формулировку, она с большей вероятностью двинется в нужном направлении.

Например, вместо:

Объясни, почему фильм плохой

лучше написать:

Опиши недостатки фильма, особенно связанные с сюжетом и актёрской игрой.

Также важно помнить: модель – не оракул. Она может ошибаться. Иногда её ответы бывают странными или лишёнными смысла. Поэтому важно относиться к ним критически и быть готовыми переформулировать запрос.

Непредсказуемость ответов языковых моделей

Большие языковые модели, по крайней мере в ближайшей перспективе, вряд ли будут давать вам точный и повторяющийся ответ каждый раз. Всегда будет вероятность того, что они сгенерируют что-то немного неожиданное – и это задумано специально, что в некоторых случаях может быть даже полезно.