Геометрическая волновая инженерия: наука о новых волновых процессах - страница 12

Шрифт
Интервал


Полная кривизна (гауссова кривизна) K = -1/R2 постоянна, что определяет внутреннюю геометрию поверхности, где в каждой точке псевдосфера обладает отрицательно искривленной геометрией седла.

Важно отметить, что псевдосфера локально изометрична плоскости Лобачевского (гиперболической плоскости), что означает, что локально расстояния и углы на псевдосфере такие же, как и на гиперболической плоскости.

Визуальные представления и 3D-модели.

Характерная форма псевдосферы – это форма рога, часто изображаемая как поверхность с заострением и сингулярностью на экваторе. Существуют визуализации, демонстрирующие геодезические линии на псевдосфере, которые при отображении на модель Пуанкаре верхней полуплоскости соответствуют прямым линиям или дугам окружностей, перпендикулярным вещественной оси. Встречаются 3D-модели и скульптуры, вдохновленные псевдосферой, например, мемориал Бойяи и модели из бумаги или других материалов. Следует также отметить существование «дышащих псевдосфер» и других связанных псевдосферических поверхностей, получаемых из решений уравнения синус-Гордона, которые могут иметь более сложную и «дышащую» форму.



Рис. № 1. 3D-модель псевдосферы Бельтрами с постоянной отрицательной кривизной.

В псевдосфере (сферической полости) энергия концентрируется в геометрическом центре. Физически это происходит потому, что:

Механизм концентрации:

Все лучи, исходящие из центра, отражаются от стенок и возвращаются обратно в центр.

После многократных отражений возникает стоячая волна с максимумом энергии в центре.

Аналогично звуковым волнам в сферическом помещении.

Математическое обоснование:

В сферических координатах решение волнового уравнения дает максимум амплитуды при r=0.

Условие резонанса: диаметр сферы = n·L/2,

где n – целое число.

Применение в электромагнитных и акустических резонаторах

Псевдосфера обладает потенциалом для моделирования замкнутых резонаторов для электромагнитных и акустических волн, особенно благодаря своей способности удерживать энергию за счет своей геометрии. Исследования показывают поведение электромагнитных волн и частиц (например, электронов в графене) на псевдосфере Бельтрами, изучаются такие явления, как релятивистские уровни Ландау и квантовый эффект Холла в присутствии магнитных и электрических полей.