Геометрическая волновая инженерия: наука о новых волновых процессах - страница 5

Шрифт
Интервал


Поверхности с постоянной отрицательной гауссовой кривизной, такие как псевдосфера Бельтрами, локально изометричны гиперболической плоскости. Это означает, что в достаточно малой области геометрия псевдоповерхности неотличима от геометрии гиперболической плоскости. Гиперболическая геометрия является неевклидовой геометрией, где постулат Евклида о параллельных прямых не выполняется; вместо этого, для любой прямой и точки, не лежащей на этой прямой, существует бесконечно много прямых, проходящих через данную точку и не пересекающих данную прямую.

Это фундаментальное различие имеет глубокие последствия для поведения прямых (и, по аналогии, траекторий волн или лучей) на таких поверхностях. Концепции гиперболической геометрии, такие как предельные параллельные (асимптотические линии, которые никогда не встречаются) или кривые, нормальные радиусы которых все предельно параллельны, могут найти прямые аналогии в поведении волн, сконструированных на псевдоповерхностях, потенциально приводя к новым волноводным и фокусирующим устройствам.

Принцип Гюйгенса, краеугольный камень волновой оптики, предоставляет мощный инструмент для понимания распространения волн с геометрической точки зрения. Он постулирует, что каждая точка на распространяющемся волновом фронте может рассматриваться как источник вторичных сферических волн, и что новый волновой фронт в более поздний момент времени является огибающей этих волн.

Этот принцип может быть использован для графической иллюстрации кинематики ударных волн с использованием кругов и дуг для представления распространяющегося волнового фронта.

2.2. Дифференциальная геометрия и кривизна

Сравнительный анализ типов кривизны для ГВИ

Ключевым понятием геометрической волновой инженерии (ГВИ) служит Гауссова кривизна (K) – внутренняя мера искривления поверхности в данной точке, определяемая как произведение двух главных нормальных кривизна к1 и к2:

K = к1 × к1

В отличие от простой внешней формы, Гауссова кривизна является инвариантом метрики поверхности, что делает её фундаментальным элементом для моделирования волновых процессов, происходящих не только на поверхности, но и в эффективном волновом пространстве, индуцированном геометрией.

В зависимости от знака кривизны возможны три типа локальных геометрий, каждая из которых оказывает существенное влияние на поведение распространяющихся волн: