Новая водолазная и другая подводная техника - страница 4

Шрифт
Интервал


В отсутствие газообмена между воздухом камеры и водой испытатель мог бы дышать данным объемом воздуха не более 10 мин, после чего из-за исчерпывания кислорода и накопления СО>2 дыхание оказалось бы невозможным. Следовательно, газообмен между воздухом камеры и водой осуществлялся нормально.


Пример 2.

Способ осуществляют аналогично примеру 1, но в качестве пористых мембран применяют «ядерные» фильтры на основе полиэтилентерефталата с диаметром пор 0,01 мкм. Испытатель провел под водой 40 мин.


Пример 3.

Способ осуществляют аналогично примеру 1, но в качестве пористых мембран применяют комбинированную ткань на основе шерстяных и синтетических волокон. Диаметр пор материала находится в пределах от 15 до 80 мкм. Испытатель провел под водой 2,0 ч, опускаясь на глубину до 2,6 м. Давление внутри камеры было на 90 мм водяного столба больше суммарного давления атмосферы и гидростатического столба, составлявшего 1,26 ата.


Пример 4.

Способ осуществляют аналогично примеру 1, но погружение проводят на глубину 7,0 м при давлении внутри камеры на 70 мм водяного столба выше значения 1,7 ата. При этом за счет гидростатического давления камера сжималась и объем ее уменьшался приблизительно до 58 л. Для восстановления объема камеры из баллона со сжатым воздухом через специальное устройство была проведена подпитка воздуха до восстановления объема камеры 100 л. Дыхание не вызывало затруднений у испытателя. Опыт продолжался 30 мин.


Пример 5.

Способ осуществляют аналогично примеру 4, но подпитку для восстановления объема проводят смесью гелий – кислород с 20 об.% кислорода. В течение 45 мин испытатель дышал этой смесью без заметных затруднений при вдохе и выдохе. При этом часть подаваемого газа выходила из камеры через наиболее крупные поры мембраны. Давление внутри камеры было на 220 мм водяного столба выше значения 1,7 ата.


Пример 6.

Из материала на основе вискозы и стеклоткани с диаметром пор менее 70 мкм был изготовлен купол объемом 50 л. Купол помещают под воду и заполняют его объем азотом. После 5 ч нахождения купола под водой отбирают пробу газа на содержания кислорода. Анализ показал присутствие кислорода под куполом в количестве 18,7.%, что свидетельствует о диффузии кислорода из воды.


Рис. 1. Схема эксперимента.


Мой комментарий.


Как видно из приведённых выше примеров, предложенный способ позволяет работать под водой в течение длительного времени (до двух и более часов) на различных глубинах, при этом за счет извлечения воздуха (кислорода) из воды концентрация кислорода поддерживается постоянной даже при значительно меньшей (около 1,5 м