Возвращение времени. От античной космогонии к космологии будущего - страница 53

Шрифт
Интервал


Эйнштейн отразил естественность падения в самом красивом принципе своей теории (и физики вообще): принципе эквивалентности сил гравитации и инерции. Он гласит: когда вы падаете, вы не можете почувствовать движение. Ощущения, испытываемые обывателем в падающем лифте, не отличаются от ощущений космонавта, вышедшего в открытый космос. Сила, воздействие которой мы испытываем, когда сидим или стоим – не гравитация, тянущая нас вниз, а пол или стул, действующие снизу и удерживающие нас от падения. Когда я сижу за письменным столом, я двигаюсь неестественно.

Эйнштейн был гением не из-за математической сложности своей ОТО (с этой стороной его теории справится большинство нынешних математиков и физиков): ему удалось изменить наш взгляд на один из простейших аспектов бытия. Прежде, до Эйнштейна, мы думали, что ежедневно и круглосуточно испытываем действие гравитации. Эйнштейн указал, что это не так: мы ощущаем пол. Эйнштейн эту очень физическую идею с помощью своего друга, математика Марселя Гроссмана, превратил в гипотезу о геометрии мира. Гипотеза основывалась на одном из исходных геометрических понятий – прямой.

Прямая определяется в школьном курсе геометрии как путь, соединяющий две точки по кратчайшему расстоянию. Это определение применимо для маршрута самолета, но может быть распространено и на криволинейные поверхности. Представьте сферу, например, поверхность Земли. Можно подумать, что на поверхности сферы нет прямых линий, потому что поверхность искривлена, но это не так, когда мы подразумеваем под прямой путь, который ведет из одной точки в другую по кратчайшему расстоянию. Мы называем кривые, удовлетворяющие этому определению, геодезическими. На плоскости геодезическими являются прямые. Но когда мы имеем дело со сферой, геодезическими являются сегменты больших окружностей. Именно они являются маршрутами самолетов, совершающих полет между двумя городами по кратчайшему пути[42].

Если траектория тел, падающих в гравитационном поле, является естественной, необходимо обобщить их на прямые линии, вдоль которых, согласно Ньютону, тела двигаются, если на них не действуют внешние силы. Но теперь у нас есть выбор: как свободные частицы движутся вдоль прямых в пространстве, так они движутся по прямой в пространстве-времени Минковского. Хотим ли мы представить гравитацию путем искривления пространства или искривления пространства-времени?