Со времен Исаака Ньютона было так: создаешь теорию физики, записывая уравнение или систему уравнений, называемых дифференциальными. Потом обсчитываешь следствия теории, решая эти дифференциальные уравнения. С квантовой теорией все в точности так же. К примеру, чтобы разобраться, что квантовая электродинамика – квантовая теория электрически заряженных частиц – предсказывает в поведении электрона, физик 1940-х для начала описал бы его текущее, или «исходное», состояние. Эта математическая функция содержит количественную информацию об импульсе электрона и энергии в начале процесса или эксперимента. Цель теоретика – описать эти же количества в конце процесса или эксперимента (то есть рассчитать так называемое «конечное» состояние) или хотя бы рассчитать вероятность, с которой электрон достигнет того или иного состояния, интересующего ученого. Для этого физику нужно решить дифференциальное уравнение.
Чтобы вычислить вероятность, с которой электрон в некоем исходном состоянии окажется в другом, конечном, в Фейнмановом подходе необходимо сложить по определенным правилам вклады всех возможных траекторий, или историй, электрона, приводящих его из исходного состояния в конечное. По Фейнману, именно это отличало квантовый мир от повседневного, или классического. В классических теориях частица перемещается по единственной траектории – в точности как предметы в окружающем нас мире. Странный квантовый мир возникает от необходимости учитывать всякие дополнительные маршруты. Для крупных предметов сложение всех возможных путей дает лишь один, самый значимый, классический, и потому квантовых эффектов не замечаешь. А для субатомных частиц – например, электронов – отметать траектории, которыми этот электрон движется в дальних просторах Вселенной или мечется во времени, уже нельзя. Квантовый электрон носится по Вселенной в космическом танце, из настоящего в будущее, а оттуда – в прошлое, отсюда – везде и обратно. Следуя своими путями, он не обращает внимания на привычные нам правила движения и ведет себя так, будто природа бросила поводья. По словам Фейнмана, тут даже «временной порядок событий… не применим». И все-таки, как гармония музыкальных инструментов, все эти траектории, сложенные вместе, дают конечное квантовое состояние, наблюдаемое экспериментатором.