Как подсчитать бесчисленные пальцы
Еще до того как системы счета оказались в полной мере развиты, человеку надо было иметь возможность как-то записывать определенные количества предметов. Древнейшие археологические находки, которые, как полагают, так или иначе связаны со счетом, – это кости с нанесенными через равные интервалы насечками. Самая древняя находка, датируемая примерно 35 000 лет до н. э., – бедренная кость бабуина, обнаруженная в пещере в горах Лебомбо в Африке. На этой кости нанесено двадцать девять насечек. Другая подобная «бухгалтерская» находка – волчья кость с пятьюдесятью пятью насечками (объединенными в две группы – двадцать пять и тридцать, – причем первая разбита еще и на подгруппы по пять), – обнаружена археологом Карелом Абсолоном в 1937 году на стоянке в Долне Вестонице в Чехословакии; ее относят к ориньякской культуре (около 30 000 лет назад). Группировка насечек по пять в особенности говорит в пользу концепции основания системы счисления, о чем я еще упомяну. Точное предназначение этих насечек нам неизвестно, однако, возможно, это учет охотничьей добычи. Группировка, вероятно, помогала охотнику вести счет, не подсчитывая каждый раз все насечки. Подобные размеченные кости были найдены и во Франции, и в пещере Пекарна в Чехии – они относятся к мадленской культуре (около 15 000 лет назад).
Большой интерес ученых вызвала так называемая кость Ишанго, обнаруженная в 1950 году археологом Жаном де Хайнзелином де Брокуром на стоянке Ишанго близ границы между Угандой и Заиром (рис. 6). Это костяная рукоять какого-то орудия, датируемая примерно 9000 г. до н. э., с тремя рядами насечек, организованных в следующие группы: (i) 9, 19, 21, 11; (ii) 19, 17, 13, 11; (iii) 7, 5, 5, 10, 8, 4, 6, 3. Сумма чисел в первых двух рядах – по 60 в каждом, что натолкнуло некоторых ученых на мысль, что они, вероятно, отражают запись фаз Луны в двух лунных месяцах (если предположить, что некоторые насечки из третьего ряда, где сумма составляет всего 48, стерлись). Были предложены и другие, более хитроумные и куда менее правдоподобные толкования. Например, де Хайнзелин, исходя из того, что второй ряд состоит из простых чисел, следующих подряд (то есть чисел, которые делятся только на 1 и сами на себя), а первый ряд – из чисел, которые на единицу отличаются от 10 или 20, предположил, что у жителей Ишанго были какие-то рудиментарные познания в арифметике и что они даже знали о простых числах. Нет нужды говорить, что многим исследователям подобная интерпретация кажется несколько смелой.