Против богов. Укрощение риска - страница 43

Шрифт
Интервал


В автобиографии Кардано сообщает, что написал «Liber de Ludo Aleae» в 1525 году, будучи еще молодым человеком, и переписал заново в 1565-м. При экстраординарной оригинальности книга чрезвычайно беспорядочна. Она собрана из бесчисленных черновых набросков и решений проблем, которые появляются в одном месте, перемежаются с решениями, базирующимися на существенно отличных методах, описанных в другом месте. Отсутствие какой-либо системы в использовании математических символов страшно затрудняет понимание текста. Работа не публиковалась при жизни Кардано. Она была найдена среди рукописей после его смерти и впервые опубликована в Базеле только в 1663 году. К этому времени в теории вероятностей был достигнут значительный прогресс силами других ученых, которые не были знакомы с направленными к той же цели усилиями Кардано.

Если бы эта работа не пролежала целое столетие в безвестности, содержащиеся в ней обобщения, касающиеся вероятностей в играх, могли бы значительно ускорить развитие математики и теории вероятностей. Здесь впервые сформулировано общепринятое теперь представление вероятности через отношение числа благоприятных исходов к «совокупности» (circuit), то есть к общему числу возможных исходов. Например, когда мы говорим, что шансы выбрасывания орла или решки составляют >50/>50, это значит, что орел выпадает в одном из двух равновозможных случаев. Вероятность достать даму из колоды карт составляет >1/>13, поскольку в колоде из 52 карт имеется четыре дамы; вероятность же достать даму пик равна >1/>52, поскольку в колоде только одна дама пик.

Последуем за Кардано в его рассмотрении вероятностей различных результатов бросков при игре в кости[19]. В главе 15 его «Liber de Ludo Aleae», в параграфе, озаглавленном «О выбрасывании одной кости», он проясняет некоторые общие принципы, ранее никем не рассматривавшиеся:

Частоты появления значений, относящихся к каждой из двух половин числа граней, одинаковы; отсюда шансы, что данное значение выпадет в трех бросках из шести, равны шансам, что одно из трех заданных значений выпадет в одном броске. Например, я могу легко выбросить один, три или пять, так же как два, четыре или шесть. Ставки должны соответствовать этому равенству, если игра ведется честно>14.

Далее Кардано продолжает вычислять вероятность того, что в одном броске выпадет одно из двух чисел, скажем 1 или 2. Ответ: один шанс из трех, или 33 %, поскольку речь идет о двух исходах из шести возможных. Он также подсчитывает вероятность повторения благоприятных исходов при бросании одной кости. Вероятность того, что в двух бросках подряд выпадет 1 или 2, равна