Основы физиологии сердца - страница 29

Шрифт
Интервал


/K>+-ATФ-азой. Этот фермент переносит 3 Na>+ в обмен на 2 K>+, который вышел из клетки в ходе быстрой реполяризации и реполяризации. Аналогичным образом большая часть излишка кальция, который вошел в клетку в течение фазы плато, удаляется Na>+/Ca>2+-обменником, который обменивает 3 Na>+ на 1 Ca>2+.

Фаза 4 – мембранный потенциал покоя (в сократительных кардиомиоцитах), или спонтанная диастолическая деполяризация (в изолированных клетках Пуркинье). Механизмы возникновения мембранного потенциала покоя рассмотрены выше, и в сократительных кардимиоцитах они обеспечиваются в основном выходящим током калия I>K+1. В условиях патологии сердца сократительные кардиомиоциты могут также приобрести способность к спонтанной диастолической деполяризации и генерации потенциалов действия, что является одной из причин возникновения экстрасистолии и других нарушений сердечного ритма.

В изолированных клетках волокон Пуркинье спонтанная диастолическая деполяризация обусловлена в основном уменьшением выходящих калиевых токов I>KS и I>KR в результате инактивации K>+-каналов задержанного выходящего тока, а также усилением входящего тока ионов натрия (I>f). О роли изменений силы этих токов в возникновении спонтанной диастолической деполяризации в данных клетках свидетельствуют опыты с применением агониста М-холинорецепторов ацетилхолина и блокатора натриевых каналов лидокаина. Применение ацетилхолина, вызывая усиление выходящего калиевого тока и в результате гиперполяризацию мембраны, приводит к выраженному уменьшению скорости спонтанной диастолической деполяризации и даже ее прекращению. Блокада натриевых каналов лидокаином также приводит к снижению скорости спонтанной диастолической деполяризации в изолированных клетках волокон Пуркинье.

В настоящее время пока невозможно ответить на вопрос о причинах спонтанного открытия и закрытия ионных каналов, поскольку нет общей гипотезы и модели возникновения самогенерации электрических колебаний в живых системах, равно как и гипотезы возникновения биоритмов. Поэтому электрофизиологические процессы, происходящие в кардиомиоцитах при возбуждении, требуют дальнейшего изучения. Знание процессов, лежащих в основе нормальной электрофизиологии сердца, позволяет понять механизмы развития различных видов нарушений ритма и проводимости миокарда, а также синтезировать новые антиаритмические препараты. Таким образом, сложные процессы вероятностного открытия и закрытия ионных каналов, вызывающие усиление или уменьшение входящих и выходящих ионных токов, определяют особенности потенциалов действия и электрофизиологические свойства «медленных» и «быстрых» кардиомиоцитов, сравнительная характеристика которых представлена в табл. 1 и 2.