Итоги подводятся так же, как и при проведении олимпиад, адаптированных под учебник Г. В. Дорофеева и Л. Г. Петерсон. Те же 10 туров, та же формула для подведения итогов.
Практика показала, что детям очень нравится такое соревнование. Неожиданным и одновременно приятным было то обстоятельство, что учащиеся, занимающие последние места, рвались на игру не хуже «обитателей суперлиги» и также живо обсуждали каждый промежуточный итог игры.
Выражаю большую благодарность своим коллегам: Наталье Михайловне Дорофеевой и Ольге Алексеевне Коржовой, которые вместе с автором книги разработали данную форму проведения математических олимпиад.
Финальная игра (5–6 классы)
Игра названа финальной, так как ее рекомендуется проводить в качестве итоговой к олимпиадам по лигам. В ней соревнуются между собой учащиеся, занявшие одинаковые места в своих классах. Так, из вышеприведенной таблицы следует, что первое место в 5а классе заняла Вертепова Татьяна, в 5б – Углов Денис, в 5в – Заводов Алексей. Значит, в финальной игре они и соревнуются между собой. В нашем случае получаем следующую таблицу участников:
В книге приведено 17 вариантов финальной игры. Если в классе более 17 человек, что характерно для общеобразовательных школ, то задания для последующих вариантов можно взять из учебника или дидактических материалов.
Финальную игру можно провести независимо от олимпиад по лигам; в этом случае за основу берутся учебные показатели учащихся.
Межклассные математические олимпиады
Соревнуются учащиеся 5–9 классов. Привлекать 10–11 классы вряд ли целесообразно ввиду их профилизации.
В книге вы найдете задания трех межклассных олимпиад.
На межклассную математическую олимпиаду № 1 от каждого класса представляются две команды. Общая численность двух команд – не более 12 человек.
За каждое задание можно получить: 0 очков (—), 1 очко ( + ), 2 очка ( + ), 3 очка ( + ).
Очки, набранные командой № 1, умножаются на 1, 5.
В олимпиаду входят:
кроссворд;
технические задания (примеры, уравнения, неравенства и т. д.);
задачи на сообразительность;
геометрические задания;
задачи по комбинаторике.
Класс может выставить на олимпиаду более двух команд (скажем, одну первую и две вторых). В этом случае будет засчитан лучший из результатов. Например, если команда № 1 набрала 11 очков, команда № 2а – 12 очков, команда № 26–14 очков, то класс в целом получает 11 1, 5 + 14 = 30, 5 очков. Время выполнения работы – 60 мин.