Геометрия: Планиметрия в тезисах и решениях. 9 класс - страница 7

Шрифт
Интервал


16. В чем состоит сущность метода доказательства теорем от противного? (1)

17. Что такое теорема-свойство и теорема-признак? (1)

18. Что такое характеристическое свойство геометрического объекта (фигуры, тела и т. д.)? Как связаны между собой термины «характеристическое свойство объекта» и «определение объекта»? (1)

19. Какие требования предъявляются к системе аксиом? (3)

20. Как вы понимаете следующие высказывания:

а) система аксиом непротиворечива; (3)

б) система аксиом независима; (3)

в) данная система аксиом – полная (3)?

21. Какая геометрия называется евклидовой? (1)

22. Какие неевклидовы геометрии вы знаете? (3)

23. В чем отличие аксиоматики Лобачевского от систем аксиом Евклида? (3)

24. В чем суть аналитического подхода в геометрии? (2)

25. Что такое аффинная система координат? (2)

26. Что такое группа? В чем суть группового подхода в геометрии? (3)

27. Что такое инвариант? (3)

1.3. Темы для сообщений и рефератов

1. Высказывания. Операции над высказываниями. Законы математической логики.(2)

2. Основные факты планиметрии Лобачевского. (3)

3. Особенности геометрии на сфере. (3)

4. Методы доказательства теорем (прямое доказательство, от противного, контрпример, метод симметрии и т. д.). (1–2)

5. Группы преобразований плоскости и их инварианты. (3)

6. Топологические многообразия в геометрии. (3)

§ 2. Основные понятия планиметрии

2.1. Справочная информация

На экзамене по геометрии очень важно давать правильные (корректные) определения. Часто допускаются такие ошибки, как «порочный круг» (например, круг – это часть плоскости, ограниченной окружностью, а окружность – это граница круга), наличие синонима определяемого термина в определении, пропуск «несущественных деталей» (например, касательная к окружности – это прямая, имеющая с окружностью одну общую точку, «деталь» – это тот факт, что прямая должна лежать с окружностью в одной плоскости).

Определения геометрических фигур можно дать различными способами:

1. Через род и видовое отличие.

Например: квадрат – это прямоугольник с равными сторонами. Прямоугольник в определении – ближайший род, равенство сторон – видовое отличие.

2. Генетически (указание происхождения понятия).

Например, окружность – это множество точек плоскости, находящихся на равном расстоянии от данной точки, лежащей в этой плоскости.