Базы данных: конспект лекций - страница 17

Шрифт
Интервал


2) свойство идемпотентности:

а) для операции выборки: σ<P> σ<P>r = σ<P>;

б) для операции проекции: r [S’] [S’] = r [S'];

в) для операции переименования в общем случае свойство идемпотентности неприменимо.

Это свойство означает, что двойное последовательное применение одного и того же оператора к какому-либо отношению равносильно его однократному применению.

Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.

Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.

И последнее свойство, которое мы рассмотрим, – это свойство монотонности. Интересно заметить, что при любых условиях все три оператора монотонны;

3) свойство монотонности:

а) для операции выборки: r>1r>2σ<P> r>1σ <P>r>2;

б) для операции проекции: r>1r>2r>1[S'] r>2 [S'];

в) для операции переименования: r>1r>2ρ<φ>r>1ρ <φ>r>2;

Понятие монотонности в реляционной алгебре аналогично этому же понятию из алгебры обычной, общей. Поясним: если изначально отношения r>1 и r>2 были связаны между собой таким образом, что rr>2, то и после применения любого их трех операторов выборки, проекции или переименования это соотношение сохранится.

Лекция № 5. Реляционная алгебра. Бинарные операции

1. Операции объединения, пересечения, разности

У любых операций есть свои правила применимости, которые необходимо соблюдать, чтобы выражения и действия не теряли смысла. Бинарные теоретико-множественные операции объединения, пересечений и разности могут быть применены только к двум отношениям обязательно с одной и той же схемой отношения. Результатом таких бинарных операций будут являться отношения, состоящие из кортежей, удовлетворяющих условиям операций, но с такой же схемой отношения, как и у операндов.

1. Результатом операции объединения двух отношений r>1(S) и r>2(S) будет новое отношение r>3(S), состоящее из тех кортежей отношений r>1(S) и r>2(S), которые принадлежат хотя бы одному из исходных отношений и с такой же схемой отношения.

Таким образом, пересечение двух отношений – это:

r>3(S) = r>1(S) ∪ r>2(S) = {t(S) | tr>1tr>2};

Для наглядности, приведем пример в терминах таблиц:

Пусть даны два отношения:

r>1(S):


r>2(S):


Мы видим, что схемы первого и второго отношений одинаковы, только имеют различной количество кортежей. Объединением этих двух отношений будет отношение