Математическое руководство по созданию компьютерных игр. Справочник - страница 28

Шрифт
Интервал


Задача усложняется, если в игре присутствует несколько сторон и репутация у каждой из них вычисляется отдельно. Сразу же возникают вопросы взаимосвязи между объединениями. Как быстро каждое из объединений забывает предыдущие заслуги? Важен ли порядок получения заслуг или всё равно как их получать? Насколько каждое из объединений ревностно относится к работе на другие объединения? Чаще всего эти вопросы решаются просто ограничением возможности вступить в каждое объединение и число объединений, в которых состоит герой, сокращается до оного или работа на каждое объединение не влияет на отношение всех остальных.

Первый из вопросов вычисления репутации состоит в забывании прежних заслуг или запоминании первых поступков. Этот вопрос решает общую оценку в игре влияния порядка двух одинаковых по величине, но противоположных по влиянию на репутацию поступков. Если упор сделан на прежние заслуги, то оценка важности должна убывать, а если помнят только последние заслуги, то оценка важности должна повышаться.

Второй вопрос репутации состоит в величине каждой заслуги. Могут ли две небольшие заслуги оцениваться как одна большая? Можно ли просто складывать оценки заслуг? Ведь хорошо известно, что количество часто переходит в качество и сто раз помочь донести мешок и один раз защитить от разбойников это совсем не одно и то же. Для оценки влияния величины заслуги можно использовать какую-нибудь быстро возрастающую зависимость, чтобы отойти от простого суммирования и увеличить вклад больших заслуг.

Как видно из рассмотренного, задача сводится к способу получения среднего значения из последовательности чисел, а также учёту порядка значений в заданной последовательности. Таким образом задача разделяется на две: определить среднее значение без учёта порядка и ввести способ учёта порядка в получение среднего значения.

Вообще, вычисление любого вида неупорядоченного среднего возможно по Колмогорову. В зависимости от выбора функций можно получить практически любые приемлемые для использования результаты. Чаще всего используется среднее арифметическое. Среднее геометрическое в силу своего требования к положительности знака и среднее гармоническое в силу своего требования неравенства нулю всех членов ряда обычно не используются. Ниже приведена формула неупорядоченного среднего по Колмогорову, где u ― монотонная функция, имеющая областью допустимых значений все возможные значения исследуемых данных, а v ― функция, обратная u.