Логика. Краткий конспект - страница 2

Шрифт
Интервал


Исходные высказывания-рассуждения называются посылками. Число посылок ничем не ограничено. Возможны умозаключения из одной, двух, трех и т. д. посылок. Но множество посылок может быть и пустым (например, аксиомы геометрии не выводятся ни из каких других высказываний и могут считаться следствием из пустого множества посылок). Обозначим множество посылок как {X}, где X = x>1, x>2…, x>n; x>i – некоторая посылка. Новое высказывание, получаемое из исходных в результате рассуждения, называется заключением (или следствием). Обозначим его через А. Тогда тот факт, что некоторое высказывание А является логическим следствием из множества посылок, символически записывается следующим образом:

{X} |= А,

где |= – знак отношения логического следования.

Высказывание А является логическим следствием из множества высказываний {X}, если, и только если истинность элементов {X} гарантирует истинность А.

Иначе говоря, заключение А логически следует из посылок {X}, если исключен случай, когда все посылки, входящие в {X}, истинны, но заключение А ложно.

При определении отношения следования нами использовано понятие истинности высказывания. Здесь мы, оставаясь в рамках логики, приходим к пределу анализа. Раскрытие природы такого важного понятия, как «истина», не входит в задачу логики. Ее интересует переход от одних высказываний к другим, сохраняющий истинность. Подчеркнем: именно корректность перехода, а не истинность того, между чем осуществляются эти переходы. Логика исходит из того, что истина есть некая данность, которую мы в состоянии отличить от лжи, не вникая в природу и происхождение этой данности. Занимаясь этим вопросом, мы выходим за границы логики и вступаем в область теории познания, методологии или пограничную между логикой и ими.

При определении предмета логики было подчеркнуто, что она ограничивается формальными свойствами правильных рассуждений. Попытаемся объяснить, что такое форма рассуждения, на следующих примерах.

Пример 1.1

Санкт-Петербург севернее Москвы.

Москва севернее Киева.

Следовательно, Санкт-Петербург севернее Киева.

Пример 1.2

x >у,

у >z,

следовательно, x > z.

В этих двух несложных рассуждениях речь идет о совершенно разных вещах. Пример 1.1 содержит рассуждение из области географии, пример 1.2 – из области математики. Однако сам ход рассуждения в обоих примерах представляется одинаковым. То, что является общим для этих примеров, – это и есть их