Логика. Краткий конспект - страница 9

Шрифт
Интервал


Второе. И. Кант (1724–1804), выдающийся немецкий философ, хотя и не имеет никаких заслуг перед логикой, окончательно и надолго определил взгляд на эту науку. Во-первых, это он впервые назвал ее формальной, во-вторых, после него окончательно закрепилось понимание логики как науки о мышлении; таким образом, «формальная логика» в кантианском понимании означает науку о формах мышления. Формальность означает здесь не только сосредоточенность на структуре, схемах мышления, но и то, что здесь не принимаются во внимание проблемы, связанные с содержанием мышления, с предметами мысли. Наконец, общим следствием из «Пор-Рояля» и Канта стало то, что логика стала рассматриваться как дисциплина, теснейшим образом связанная с теорией познания, очень часто даже как часть этой теории. Поэтому логику, излагаемую по схеме Арно и Николя и понимаемую как наука о формах мышления, правильней было бы называть не аристотелевской, но пор-роялевско-кантианской.

III. Современная логика (с середины XIX в.).

Если античная логика была тесно связана с метафизикой, средневековая – с учением о языке, а логика Нового времени – с теорией познания, то становление и развитие современной логики неразрывно связано с математикой. Именно проблемы, возникшие в основаниях математики, вызвали постепенный рост интереса к логике начиная примерно с середины XIX в. Первая составляющая процесса формирования современной, или символической, логики представлена движением в направлении алгебраизации логики. Английский математик Джордж Буль (1815–1864) в своей небольшой работе «Математический анализ логики» (1847) показал, что силлогистику Аристотеля можно представить как разновидность алгебраических уравнений, где переменные замещают не обычные арифметические величины, а классы, оговорив, что не так важно, что именно имеется в виду под алгебраическими знаками. Тогда выведение заключения из посылок сводится к решению этих уравнений. При этом оказалось, что аристотелевские силлогизмы образуют лишь скромный подкласс задач, решаемых средствами предложенных Булем алгебраических методов. Алгебраическая трактовка логики получила дальнейшее развитие в работах Августа Де Моргана (1806–1871), Уильяма Стэнли Джевонса (1835–1882), Чарлза Сэндерса Пирса (1839–1914), Эрнста Шредера (1841–1902) и др.