Перед тем как начать осваивать основы эконометрики в среде GRETL, необходимо скачать и установить на свой компьютер сам статистический пакет. Он доступен по ссылке http://GRETL.sourceforge.net/. Вся информация о том, как установить GRETL, приводится на сайте, поэтому нет нужды в подробном изложении, стоит лишь сказать, что программа имеет версию как под ОС Windows, так и под Mac OS, а также что библиотеки данных должны быть установлены отдельно, для этого нужно перейти по ссылке http://GRETL.sourceforge.net/GRETL_data.html.
Удачи в проведении интересных, содержательных и полезных эконометрических исследований!
1. Линейная регрессионная модель
Для начала введем некоторые обозначения. Предположим, что некоторая величина Y зависит от величин
. Введем понятие регрессионного уравнения – это уравнение вида
, где . Через n обозначим число наблюдений, по которым строится регрессия, k – число регрессоров в модели, – случайная величина, которая носит название ошибки регрессии.Модель такого вида называется классической линейной регрессионной моделью (ЛРМ) в случае, если выполняются следующие предпосылки:
1.
, – линейная спецификация модели, где – коэффициенты модели, которые подлежат определению, , – ошибки модели.2.
, – детерминированные величины.3.
– математическое ожидание ошибок равно нулю, , дисперсия ошибок не зависит от номера наблюдения.4.
, – совместное математическое ожидание ошибок разных наблюдений равно нулю.5. Если выполняется дополнительная предпосылка о нормальном распределении ошибок
, то классическая линейная регрессионная модель называется нормальной линейной регрессионной моделью (НЛРМ).Подробнее о предпосылках линейной регрессионной модели можно прочесть в [2, 3].
2. Оценка линейной регрессионной модели
Рассмотрим множественную линейную регрессию
,
,
где
– средний уровень заработной платы в час в долларах,
– образование в годах,
– общий стаж работы в годах,
– опыт работы у текущего работодателя, в годах, – ошибка регрессии, n – число наблюдений [файл с данными wage1.gdt].Для того чтобы оценить предложенную модель по методу наименьших квадратов (МНК), используем команду меню Модель – Метод наименьших квадратов.
В появившемся диалоговом окне в поле Зависимая переменная помещаем переменную
(для этого выделяем ее курсором в списке переменных и нажимаем на стрелку, соответствующую окну