Основы эконометрики в среде GRETL. Учебное пособие - страница 2

Шрифт
Интервал


Перед тем как начать осваивать основы эконометрики в среде GRETL, необходимо скачать и установить на свой компьютер сам статистический пакет. Он доступен по ссылке http://GRETL.sourceforge.net/. Вся информация о том, как установить GRETL, приводится на сайте, поэтому нет нужды в подробном изложении, стоит лишь сказать, что программа имеет версию как под ОС Windows, так и под Mac OS, а также что библиотеки данных должны быть установлены отдельно, для этого нужно перейти по ссылке http://GRETL.sourceforge.net/GRETL_data.html.

Удачи в проведении интересных, содержательных и полезных эконометрических исследований!

1. Линейная регрессионная модель

Для начала введем некоторые обозначения. Предположим, что некоторая величина Y зависит от величин

. Введем понятие регрессионного уравнения – это уравнение вида , где . Через n обозначим число наблюдений, по которым строится регрессия, k – число регрессоров в модели, – случайная величина, которая носит название ошибки регрессии.

Модель такого вида называется классической линейной регрессионной моделью (ЛРМ) в случае, если выполняются следующие предпосылки:

1.

,
– линейная спецификация модели, где
– коэффициенты модели, которые подлежат определению, ,
– ошибки модели.

2.

,
– детерминированные величины.

3.

– математическое ожидание ошибок равно нулю,
, дисперсия ошибок не зависит от номера наблюдения.

4.

,
– совместное математическое ожидание ошибок разных наблюдений равно нулю.

5. Если выполняется дополнительная предпосылка о нормальном распределении ошибок

, то классическая линейная регрессионная модель называется нормальной линейной регрессионной моделью (НЛРМ).

Подробнее о предпосылках линейной регрессионной модели можно прочесть в [2, 3].

2. Оценка линейной регрессионной модели

Рассмотрим множественную линейную регрессию

,
,

где

– средний уровень заработной платы в час в долларах,
– образование в годах,
– общий стаж работы в годах, – опыт работы у текущего работодателя, в годах,
– ошибка регрессии, n – число наблюдений [файл с данными wage1.gdt].

Для того чтобы оценить предложенную модель по методу наименьших квадратов (МНК), используем команду меню Модель – Метод наименьших квадратов.

В появившемся диалоговом окне в поле Зависимая переменная помещаем переменную

(для этого выделяем ее курсором в списке переменных и нажимаем на стрелку, соответствующую окну