3. Тест Фишера (Fisher test)
Для начала проверим гипотезу о незначимости регрессии в целом. Тест позволит понять, является ли построенная модель адекватной с точки зрения статистики. Для этой цели воспользуемся тестом Фишера [3].
Сформулируем гипотезы для проверки незначимости регрессии в целом в рассматриваемом примере [файл с данными wage1.gdt] модели
,
:
как минимум один из коэффициентов отличен от нуля.
Для принятия решения о том, какую гипотезу нужно отвергнуть, построим F-статистику. Для этого нам должны быть известны (помимо уже имеющихся параметров n – объем выборки и k – число регрессоров в модели) величины RSS и ESS. В явном виде в распечатке на рис. 2.2 дано значение ESS – сумма квадратов остатков, которая составляет ESS = 4966,3, а также из распечатки известен коэффициент детерминации
(подробнее о коэффициенте детерминации и его интерпретации можно прочесть в § 7).
Если вспомнить, что
,
>1 а
, то можно путем простых алгебраических преобразований найти необходимую нам величину
RSS. При этом
. Отсюда можно вычислить
. Критическое значение
F-статистики возьмем на уровне значимости 5 %:
(чтобы получить это значение, в основном меню
GRETL нужно выбрать
Инструменты – Критические значения – Фишера и ввести необходимое число степеней свободы и правостороннюю вероятность либо посмотреть в статистических таблицах распределения Фишера для уровня значимости 5 %, например в [7]).
Рис. 3.1
Рис. 3.2
Уровень значимости, на котором принимается решение о том, какую гипотезу не отвергать, остается на усмотрение исследователя. Как правило, если нет представления, какой именно уровень значимости брать, предлагается выбирать 5 %. В случаях работы с маленьким по объему выборками (от 30 до 100 наблюдений) предлагается брать уровень значимости 10 %. Для больших выборок (более 1000 наблюдений) можно взять уровень значимости 1 %. В нашем случае объем выборки средний (526 наблюдений, эта информация дана в первой строке распечатки на рис. 2.2.), поэтому можно было принять
.
Сравниваем расчетное значение F-статистики с критическим
, то есть 78,2 > 2,6. Следовательно, можно сделать вывод, что гипотеза
о незначимости регрессии в целом отвергается.
Тест Фишера можно провести также в полуавтоматическом режиме и в автоматическом режиме. Полуавтоматический режим состоит в том, что нам не нужно вручную вычислять значение расчетной