Тайны чисел: Математическая одиссея - страница 29

Шрифт
Интервал


Имеется интригующая связь между последовательностью Фибоначчи и главными героями этой главы, простыми числами. Взгляните на первые числа Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… Каждое число Фибоначчи с номером p, где p – простое, также является простым числом. Скажем, 11 – простое число, а одиннадцатое число Фибоначчи, 89, также простое. Если бы это срабатывало всегда, у нас было бы замечательное подспорье в генерации все больших и больших простых чисел. К сожалению, это не так. Девятнадцатое число Фибоначчи 4181, и, хотя 19 – простое, 4181 – составное, оно равно 37 × 113. Никто из математиков еще не сумел доказать, является ли бесконечно много чисел Фибоначчи простыми числами. Это – одна из многих неразгаданных математических тайн, связанных с простыми числами.

Как использовать рис и шахматную доску для поиска простых чисел?

По легенде, шахматы были придуманы индийским математиком. Раджа был настолько благодарен математику за увлекательную игру, что предложил ему самому назвать свое вознаграждение. Изобретатель подумал минутку, а потом попросил, чтобы на первую клетку шахматной доски положили одно зерно риса, на вторую клетку – две рисинки, на третью – четыре, на четвертую – восемь, и так далее, чтобы на каждой последующей клетке было в два раза больше зерен, чем на предыдущей.

Раджа мгновенно согласился, пораженный тем, что математик был готов довольствоваться столь малым, – однако его ждало потрясение. Когда на доску начали класть рис, то зернышки на первых клетках были едва видны. Но на 16-ю клетку потребовалось около килограмма риса. Для двадцатой клетки его слуга прикатил тачку риса. До 64-й клетки, последней на доске, так и не дошли. Для этого общее количество рисинок должно было дойти до ошеломительного числа

18 446 744 073 709 551 615.

Пожелай мы повторить этот подвиг в центре Лондона, гора риса достигла бы окружающей город автомагистрали М25 и была бы настолько высокой, что покрыла бы все здания. Фактически, в этой горе оказалось бы больше риса, чем было выращено на всем земном шаре в предшествующем тысячелетии.


Рис. 1.24. Продолжение удвоения приводит к быстрому росту чисел


Неудивительно, что индийский раджа не сумел отдать математику обещанное вознаграждение и был вынужден вместо этого расстаться с половиной своего состояния. Таков один из способов обогатиться с помощью математики.