Тайны чисел: Математическая одиссея - страница 28

Шрифт
Интервал


Как и в цветках, вы можете найти числа Фибоначчи в чешуйках сосновых шишек и плодов ананаса. Разрежьте банан поперек, и вы увидите три сектора. Сделайте то же посередине яблока, и вы обнаружите пятиконечную звезду. А поступив так с хурмой, вы увидите восьмиконечную звезду. Везде, где происходит рост, – в поколениях ли кроликов, в строении подсолнухов или фруктов – всюду возникают числа Фибоначчи.

То, как растут раковины, также тесно связано с этими числами. Малютка-улитка начинает с небольшого квадратного домика размером 1 на 1. По мере своего роста она добавляет одну комнату к домику и продолжает повторять этот процесс. Так как улитке особо не на что опираться, она просто добавляет комнату, размер которой определяется размерами двух предыдущих комнат. Подобным образом последующее число Фибоначчи определяется суммой двух предыдущих чисел. Результатом такого роста будет простая, но красивая спираль.


Рис. 1.23. Как построить раковину, используя числа Фибоначчи


Вообще-то эти числа не должны называться в честь Фибоначчи, потому что не он первый столкнулся с ними. Они были открыты вовсе не математиками, а поэтами и музыкантами в средневековой Индии. Индийские поэты и музыканты стремились к исследованию всевозможных ритмических структур, получаемых комбинацией длинных и коротких ритмических единиц. Если долгий звук в два раза длиннее короткого звука, сколько различных метрических структур получится, когда задано общее количество тактов? Например, восемь тактов вы можете получить с помощью четырех долгих звуков или восьми коротких. Но между этими двумя предельными случаями имеется множество других комбинаций.

В VIII в. индийский писатель Вираханка решил справиться с задачей по определению количества возможных ритмических последовательностей. Он обнаружил, что по мере того, как растет число тактов, количество последовательностей ведет себя как 1, 2, 3, 5, 8, 13, 21… Он понял, как и Фибоначчи после него, что следующее число в последовательности равно сумме двух предыдущих чисел. Так что, если хотите знать количество возможных ритмов при восьми тактах, найдите восьмой член этой последовательности, а значит, сложите 13 и 21, что приводит к 34.

Возможно, математику, скрывающуюся за ритмами, проще понять, чем увеличение численности кроликов Фибоначчи. Чтобы, к примеру, получить все возможные ритмы при 8 тактах, нужно взять шеститактные ритмы, дополненные долгим звуком, и добавить к ним семитактные ритмы, дополненные коротким звуком.