Тайны чисел: Математическая одиссея - страница 35

Шрифт
Интервал


Открытие Гаусса привело к созданию весьма действенной модели, которая позволяет предсказать многое о поведении простых чисел. Все выглядит, словно природа кидает игральные кости для определения того, будет ли число простым. Все грани этих костей пусты, за исключением одной, где написано слово «ПРОСТОЕ»:


Рис. 1.25. Игральные кости природы


Подбросьте игральную кость, чтобы решить, станет ли число простым. Если внизу окажется подписанная грань, то оно станет простым, если пустая грань, то нет. Конечно, это всего-навсего эвристическая модель – вы не можете лишить число 100 его делителей посредством удачного броска игральной кости. Но данная модель дает числа, распределение которых, как полагают, крайне напоминает распределение простых чисел. Теорема о распределении простых чисел Гаусса говорит нам, сколько должно быть граней у игральной кости. Так, для числа с тремя цифрами нужно использовать кость с шестью гранями, или кубик с одной подписанной гранью. Для чисел с четырьмя цифрами возьмите кость с восемью гранями, октаэдр. Если же в числе пять цифр, используйте кость с 10,4 грани… Конечно, такая игральная кость сугубо теоретическая, ведь не может быть многогранника, у которого число граней 10,4.

В чем состоит задача на миллион долларов?

Вопрос на миллион долларов касается природы этих игральных костей: честные они или шулерские? Будут ли они распределять простые числа во вселенной всех чисел справедливо или же будут области с предвзятыми результатами, где простых чисел слишком много либо слишком мало? Эта задача называется гипотезой Римана. Бернхард Риман был студентом Гаусса в немецком городе Гёттингене. Он разработал крайне изощренный математический аппарат, позволяющий понять, каким образом эти кости распределяют простые числа. Используя специальную функцию, называемую дзета-функцией, особые числа, называемые компле́ксными, и проведя анализ, ошеломляющий по своему объему, Риман разработал математику, контролирующую падение этих игральных костей. Он полагал, основываясь на своем анализе, что игральные кости должны быть «честными», но не мог доказать этого. Доказать гипотезу Римана – ваша задача.

Другая интерпретация гипотезы Римана состоит в уподоблении простых чисел молекулам газа в комнате. Вы не можете знать в произвольном случае, где находится каждая из молекул, но физика утверждает, что молекулы будут довольно равномерно распределены по комнате. Невозможно такое, что в одном углу будет повышенная концентрация молекул, а в другом – полный вакуум. У гипотезы Римана схожие следствия применительно к простым числам. Она не может подсказать нам, где находится каждое из простых чисел, но гарантирует, что во вселенной чисел они распределены справедливым, пусть и случайным образом. Для математиков часто хватает такого вида гарантии, чтобы пуститься в навигацию по вселенной чисел с достаточной степенью уверенности. Тем не менее, пока не получен приз в миллион долларов, мы не вполне можем осознавать, как ведут себя простые числа, по мере того как наш счет уводит все глубже и глубже в нескончаемые просторы математического космоса.