О том, чего мы не можем знать. Путешествие к рубежам знаний - страница 58

Шрифт
Интервал


Теория хаоса утверждает, что существуют вещи, которые мы никогда не сможем познать. Та самая математика, от которой я так надеялся получить полное знание, привела к прямо противоположному результату. Но положение не вполне безнадежно. Во многих случаях уравнения нечувствительны к малым изменениям и, следовательно, позволяют предсказывать будущее. В конце концов, именно так нам удалось посадить космический аппарат на пролетающую мимо комету. И не только: как показывает работа Боба Мэя, математика даже может помочь нам узнать, чего именно мы не можем узнать.

Но одно открытие, сделанное в конце XX в., поставило под вопрос даже и основополагающее положение Лапласа о теоретической предсказуемости будущего. В начале 1990-х гг. аспирант по имени Ся Чжихун доказал, что пять планет можно расположить таким образом, что, когда они будут отпущены, гравитационное притяжение вынудит одну из планет вылететь из системы и достичь бесконечной скорости за конечное время[31]. Хотя никакого столкновения планет не происходит, уравнения неизбежно предсказывают результаты, катастрофические для обитателей такой несчастливой планеты. Того, что происходит после этого момента, уравнения предсказать не могут.

Открытие Ся оспаривает мнение Лапласа о том, что уравнения Ньютона предполагают возможность познания будущего при наличии полного знания настоящего, на самом фундаментальном уровне, потому что даже уравнения Ньютона не могут предсказать, что случится с этой несчастной планетой после того, как она достигнет бесконечной скорости. Теория достигает в этом месте сингулярности, и никакие дальнейшие предсказания не имеют смысла. Как мы увидим на следующих «рубежах», соображения теории относительности ограничивают физическое осуществление такой сингулярности, так как несчастная планета в конце концов достигнет скорости света в вакууме, на которой, как было показано, теория Ньютона является лишь приближенным представлением реальности. И тем не менее этот пример показывает, что для познания будущего одних уравнений недостаточно.

Интересно послушать, что говорил Лаплас на смертном одре. Видя, как его собственная сингулярность приближается к нему, оставляя ему лишь ограниченное время, он тоже признал: «То, что мы знаем, невелико, а то, чего мы не знаем, огромно»