Физика. Порядок вещей, или Осознание знаний. Книга 2 - страница 20

Шрифт
Интервал


а= 10 * V / (10 * t) = V / t

Из классической физики, а именно из понятия годографа известно, что центростремительное ускорение – это линейная скорость линейной скорости. Поэтому на рисунке (4.1.2.1, позиция 3) вектор ускорения по изменению радиальной скорости по направлению (a>r), как ему и положено быть по определению, размещён вдоль касательной к годографу вектора радиальной скорости (Vr).

Далее, если в конец вектора радиальной скорости параллельно самому себе перенести ещё и проекцию вектора абсолютного ускорения, то можно увидеть, что вектор (a>r) в точности совпадает с вектором (a>ve), как с проекцией той же самой (a>абс) на ту же самую касательную к тому же самому годографу. При этом один вектор (a>абс) не может иметь две одинаковые, но независимые проекции на одно и то же направление. Следовательно, векторы (a>ve) и (a>r) это одна и та же физическая величина, которая и является ускорением Кориолиса.

Природа никогда не повторяется, в ней нет двух одинаковых отпечатков пальцев и радужной оболочки глаз! И уж тем более в природе не может быть двух разных по своей физической сущности но абсолютно одинаковых по величине ускорений.

Таким образом, две половинки классического ускорения Кориолиса это одна и та же физическая величина, вдвое меньшая своего классического значения.

При этом напряжение Кориолиса по абсолютной величине действительно соответствует классической силе Кориолиса (см. гл. 3.4.3 и настоящую 4.1.). Однако половина этого напряжения не реализуется в новое движение тела. Она компенсируется истинной силой Кориолиса—Кеплера, а энергия этого напряжения рассеивается среди элементов радиуса, тела и окружающей среды. В классической физике нет истинной силы Кориолиса—Кеплера. Поэтому для того, чтобы оправдать полную энергию реального напряжения Кориолиса и была придумана сказка про удвоенное ускорение Кориолиса (2ωV).

***

Идентичность приращения линейной скорости переносного вращения по абсолютной величине и относительной скорости по направлению можно показать и аналитически. Приращение радиальной скорости относительного движения по направлению равно:

ΔVr = Vr * Δα = Vr * ω * Δt

Это выражение соответствует третьему члену выражения (66.4) у Матвеева.

Произведение (Vr * Δt) в выражении для (ΔVr) есть не что иное, как изменение радиуса переносного вращения (Δr). Тогда выражение для (ΔVr) можно записать в виде: