Наибольшую выгоду от этого перехода получила гибридная кукуруза – она ведь является самой жадной и потребляет больше удобрений, чем любая другая сельскохозяйственная культура. Несмотря на то что новые гибриды имели гены, позволяющие выжить в переуплотненных «кукурузных городах», даже самая богатая почва Айовы никогда бы не смогла прокормить тридцать тысяч голодных растений кукурузы на одном акре (около половины гектара) – это навсегда подорвало бы ее плодородие. Чтобы сохранить свои земли при распространении «кукурузной эпидемии», фермеры в те времена, когда работал отец Джорджа Нейлора, были вынуждены тщательно следить за севооборотом. Точнее, они перемежали кукурузу с бобовыми (которые добавляют азот в почву) и никогда не засевали одно и то же поле кукурузой чаще двух раз в пять лет, а наряду с минеральными удобрениями использовали навоз скота. До изобретения синтетических удобрений количество кукурузы, которое можно было вырастить на одном акре земли, строго ограничивалось количеством азота, содержащегося в почве. Собственно говоря, сами гибриды были разработаны еще в тридцатых годах прошлого века, но заметного роста урожайности кукурузы не было до пятидесятых годов, когда с химическими удобрениями познакомилась кукуруза. Вот тогда-то и произошел взрыв урожайности этой культуры.
Открытие возможности искусственного синтеза азотосодержащих соединений изменило все. И речь здесь не только о кукурузе, кукурузоводческих фермах или системе питания. Это открытие изменило все течение жизни на нашей планете! Хорошо известно, что земная жизнь зависит от азота; атомы азота – это строительные блоки, из которых природа собирает аминокислоты, белки и нуклеиновые кислоты. С помощью соединений азота передается генетическая информация; можно сказать, что инструкции о продолжении жизни на Земле написаны азотными чернилами. (Именно поэтому ученые говорят об азоте как об элементе, обеспечивающем качество жизни, тогда как углерод обеспечивает ее количественные показатели.) Запас усвояемого азота на Земле ограничен. Несмотря на то что атмосфера Земли на 80 % состоит из азота, все его атомы разбиты на тесные пары молекул N>2, не вступают во взаимодействие с другими атомами и, следовательно, бесполезны для поддержания жизни. Не случайно немецкий химик Юстус фон Либих говорил, что атмосферный азот «равнодушен ко всем другим веществам». Для того чтобы азот стал полезен для растений и животных, его неразлучные атомы нужно разделить, а затем присоединить их к атомам водорода. Химики называют процесс заимствования атомов азота из атмосферы и их объединения в молекулы, полезные для живых существ, «фиксацией». Только в 1909 году немецкий химик еврейского происхождения Фриц Габер понял, как фиксировать атмосферный азот. До того времени весь полезный азот на Земле либо связывался почвенными бактериями, живущими на корнях бобовых растений (например, гороха, люцерны или акации), либо, реже, образовывался при ударе молнии, в результате которого мизерная часть азота в воздухе фиксировалась и выпадала на землю небольшим благодатным дождем.