Актуальные проблемы обучения математике и информатике в школе и педагогическом вузе - страница 6

Шрифт
Интервал


. К ним относятся: проблема; объект; предмет; цель; гипотеза; конкретные, или частные, задачи; методы; основные авторские результаты (положения, выносимые на защиту). При этом критериями качества полученных результатов являются следующие: актуальность исследования; научная новизна; теоретическая значимость; практическая значимость. Заметим, что для студенческих исследования (выпускных квалификационных работ бакалавров или магистров), конечно, научная новизна необязательный критерий, достаточно «ученической» новизны. Представим эти характеристики, но сначала остановимся на выборе темы научного исследования по методике обучения математике.

1.2. Выбор и формулировка темы исследования

Любое научное исследование, в частности по методике обучения математике, начинается с выбора темы. Направление исследование, как правило, выбирается в соответствии с индивидуальными склонностями, особенностями, запросами, интересами автора, его сложившимися представлениями о теории и методике обучения математике. Выскажем некоторые рекомендации [8], которыми можно руководствоваться при этом. Нужно выбрать:

1) возраст обучаемых: 5–6 классы, младшие подростки; 7–9 классы, подростки, основная школа; 10–11 классы, старшеклассники;

2) раздел школьной математики: арифметика; алгебра; планиметрия; стереометрия; начала математического анализа; тригонометрия; элементы теории вероятностей и статистики; комбинаторика;

3) форму занятий: основные уроки; курсы по выбору; дополнительные занятия; внеурочная работа (кружки, олимпиады, конкурсы, турниры, математические недели и т. п.);

4) уровень освоения учебного материала: выравнивания, или компенсирующий; обязательный; продвинутый; творческий;

5) профиль обучения: гуманитарный; социально-экономический; информационно-технологический; естественно-математический и др.

Теперь, исходя из общего направления методической работы, нужно сформулировать конкретную тему исследования. Выделим следующие основные требования к её формулировке.

1. Тема должна быть актуальной. Значит, она должна быть посвящена современному, приоритетному направлению, в данном случае методики обучения математике. К таким направлениям относятся:

1) стандартизация образования;

2) требования к результатам освоения образовательных программ (личностные, метапредметные, предметные);