Избранные работы - страница 34

Шрифт
Интервал


Впрочем, их [возникновение] можно отнести на счет более глубоких и общих логических причин. Если мы представим себе внутри паутины мыслей рассмотренного здесь вида экзистенциальные предложения, которые были бы необходимы, чтобы модифицированным оборотам речи и мысли придать собственный смысл (Eigentlichkeit), конъюнктивно соединенный с одним единым предположением, то мы можем столкнуться с логической закономерностью, которая имеет всецело универсальную значимость и чрезвычайную важность для понимания научной методики: а именно, что формальные законы, которые регламентируют мышление при [условии] постоянного предположения, являются теми же самыми законами, что и те, которые имеют силу для, так сказать, свободного, т. е. не ограниченного никакими предпосылками [мышления]. С психологической точки зрения, мы можем предположение, которое мы «раз и навсегда» зафиксировали или которое лежит в основе наших последующих мыслительных ходов как «само собой разумеющееся», но без ясной фиксации (это указывает на предрасположенности к определенным дополнительным размышлениям и ограничениям), во время этих ходов часто совершенно игнорировать и можем делать это также на самом деле без ущерба для истины. Любой способ переформулировки, согласно чисто логическим законам, соответствующих, при [условии] предположения, вынесенных суждений или [любой способ] выведения из них следствий, который был бы оправданным, если бы эти суждения были безусловными, имеет также силу в имеющемся случае их зависимости от скрытого или невысказанного предположения: что выведенные суждения сами, в свою очередь, зависят от него. Или, с логической точки зрения: придаточные предложения одного и того же предположения подчиняются тем же самым законам дедукции, которые имеют силу для самостоятельных предложений, каждое заключение, которое имело бы силу исходя из таких придаточных предложений самих по себе, имеет силу также при предположении, а именно в качестве сделанного при его [условии]. С этим связано то, что каждое обусловленное высказывание об истине и ложности, существовании и несуществовании, следствии и его отсутствии, действительных или фиктивных предметах и т. д. может быть истолковано точно так же как безусловное, коль скоро уверены в том, что пределы имеющегося предположения не нарушаются. Это имеет важные следствия, в особенности в системах дедукции так называемой «формальной арифметики», где гипотетические соединения в определенном порядке формальных базисных понятий и относящихся к ним аксиом служат для конституирования замкнутой математической области, «алгебры», чье содержание образует разветвляющаяся в бесконечность система подлежащих выведению в чистой дедукции, формальных следствий этих основоположений. Здесь не только так говорят, скорее даже так судят, как будто дедуцированные истины, существования, отношения, несовместимости были бы значимы безоговорочно.