Далее проверим все переменные (временные ряды), включенные в уравнение 1 на стационарность. С этой целью будем использовать расширенный тест Дикки-Фуллера. Как известно, временной ряд считается стационарным в слабом смысле, если построенное на основе его уравнение первого порядка имеет коэффициент регрессии ρ <1. Например, уравнение Хt= 0.975*Хt-1 +С, – свидетельствует о том, что временной ряд Хt с константой С и коэффициентом ρ = 0.975 < 1 является стационарным в слабом смысле. Поэтому в этом временном ряде иногда может возникать сильная волатильность, но в случае стационарности в широком смысле она постепенно затухает. Соответственно, если бы коэффициент ρ был бы больше 1, то тогда этот временной ряд считался бы нестационарным, а, следовательно, волатильность в этом ряде не имела бы тенденции с течением времени не затухать.
Подробнее о стационарности временных рядов можно прочитать в моей книги «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel Задание и EViews» – см. главу 1 «Понятие о стационарном и нестационарном временном ряде, выявление нестационарности ряда графическим способом».
Проверка авторегрессионного процесса на стационарность проводится следующим образом. Согласно нулевой гипотезе, предполагается, что если ρ=1, то временной ряд считается нестационарным, а в случае ее опровержения принимается альтернативная гипотеза, утверждающая, что ρ <1, а, следовательно, ряд стационарный. В ходе решения обычного уравнения регрессии рассчитывается t– статистика для коэффициента регрессии ρ, совпадающая с расчетными значениями статистики Дикки-Фуллера, которая потом сравнивается с критическими значениями статистики Дикки-Фуллера (обычно в книгах они даются в специальных таблицах, но в R мы их получаем в готовом виде).
Поскольку проверка гипотезы проводится по одностороннему критерию, то в этом случае, если расчетное значение t-статистики для коэффициента регрессии ρ будет ниже критического значения статистики расширенного теста Дикки-Фуллера (с поправкой на число наблюдений), то в этом случае нулевая гипотеза о том, что ρ =1 отклоняется и принимается альтернативная гипотеза о том, что ρ < 1, а, следовательно, тестируемый временной ряд можно считать стационарным. Для того, чтобы провести расширенный тест Дикки-Фуллера загружаем для текущей работы пакет urca. Если его еще нет на Вашем компьютере, то воспользуйтесь командой install.packages(‘urca’), а затем введите следующий код: