Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - страница 110

Шрифт
Интервал


В математике, помимо таких чисто формальных утверждений, полученных путем вывода из постулатов, существуют настоящие теоремы. Настоящие теоремы – это такие утверждения, которые можно получить, если использовать независимо две различные системы постулатов, утверждения, которые устанавливают нетривиальные взаимосвязи между этими системами. Скажем, что такое теорема Пифагора? Это утверждение, что прямоугольник, построенный на гипотенузе, по площади равен сумме прямоугольников, построенных на катетах. Но можно написать это как чисто алгебраическое утверждение a>2 + b>2 = c>2, где a, b, c – числа, соответствующие сторонам треугольника. Можно понимать теорему Пифагора и как геометрическое утверждение, доказывая ее через анализ геометрических построений. То есть теорема Пифагора – это настоящая теорема, потому что есть два языка, в которых ее можно записать, и она дает возможность проникновения из одного мира (алгебры) в другой мир (геометрии). Каждый мир постулатов это замкнутый мир. Но если у вас появляется настоящая теорема, то это означает, что можно проникнуть из одного мира в другой. Почему, скажем, теория чисел считается королевой математики? Потому что теория чисел, казалось бы, имея дело с очень простыми вещами – числами, сложением, вычитанием, умножением, делением, позволяет сделать достаточно много нетривиальных утверждений выглядящих вполне элементарно. Высшая теория чисел широко использует математический анализ, метод тригонометрического разложения, теорию функций комплексных переменных и т.д. Совокупность утверждений, сделанных относительно всего числового ряда как целого, труднодоступна элементарным методам. Для того, чтобы сделать утверждение относительно всего числового ряда как целого, нужно перейти в другую систему постулатов, из другого мира посмотреть. А миры математического анализа к арифметике не сводятся. Это означает, что теория чисел обладает огромным потенциалом установления соответствия между различными математическими мирами.

Конец ознакомительного фрагмента.