Метод. Московский ежегодник трудов из обществоведческих дисциплин. Выпуск 4: Поверх методологических границ - страница 61

Шрифт
Интервал




Таким образом, инвестиции в изменение правила – это инвестиции в индивидуальный политический вес. Осталось сделать один шаг – связать затрачиваемые на политику ресурсы π>itr>it с величиной w>it. Для этого введем еще одну вспомогательную величину a>it:



Нормируя a>it на единицу, получим политический вес w>it:



Положительный параметр α отражает эффект отдачи от политического инвестирования. При 0<α<1 мы имеем убывающую отдачу: с каждым дополнительно вложенным в политику «рублем» прибавка в политическом весе будет все менее существенной. При α>1 имеет место возрастающая отдача: с увеличением объема политических инвестиций политический вес будет расти все быстрее. Наконец, при α=1 политические веса акторов пропорциональны их вложениям в политику. На сегодняшний день во всех вычислительных экспериментах использован именно этот, наиболее простой вариант. Влияние системного параметра альфа на поведение модели еще предстоит изучить, поэтому пока что для простоты мы будет ориентироваться на следующую запись формулы (9):



Итак, политические веса акторов зависят от их желания инвестировать в политику (π>it) и располагаемого ресурса (r>it).

Теперь мы можем выстроить общий алгоритм работы модели. Сначала в качестве исходных условий задается общий ресурс R>t=0 (сугубо техническая опция), значение селектора S>t=0 (будет меняться во времени в зависимости от поведения акторов), параметр распределительного неравенства β (важный системный параметр, который не будет меняться во времени). В ряде случаев также необходимо задать начальные значения π>it>=0 . Далее: общий ресурс распределяется между акторами в зависимости от их близости к селектору и установленного параметра бета-параметра распределительного неравенства.

1. Акторы принимают решение о том, в какой мере они готовы инвестировать в изменение селектора и, автоматически, в какой мере они готовы вкладывать ресурсы в производство. Рассчитываются соответствующие объемы ресурсов. Существенное замечание: в различных вариантах модели может предполагаться, что каждый актор единожды выбирает себе стратегию «на всю жизнь», либо в каждый момент времени он выбирает стратегию на один ближайший шаг. В этой работе мы будем рассматривать только первый случай как более простой.

2. Ресурсы, инвестированные в производство каждым актором, преобразуются в продукт, величина которого зависит от индивидуальной эффективности этого актора. Эти индивидуальные продукты суммируются и образуют совокупный продукт. В следующий момент времени произведенный продукт становится ресурсом, доступным для распределения среди акторов.