Введение в логику и научный метод - страница 47

Шрифт
Интервал


Рассмотрим теперь такие термины, как «фигура», «плоская фигура», «прямолинейная плоская фигура», «четырехугольник», «параллелограмм», «прямоугольник», «квадрат». Они перечислены в порядке подчиненности: термин «фигура» обозначает класс, который включает в себя денотацию термина «плоская фигура», и т. д. Каждый класс может быть обозначен как «род» относительно своего подкласса, который, в свою очередь, будет относительно него считаться видом. Таким образом, в приведенном примере денотация убывает: объем «параллелограмма» заключает в себя объем «прямоугольника» и т. д., но не наоборот. С другой стороны, содержание терминов из данного примера расширяется: содержание термина «прямоугольник» включает содержание «параллелограмма», но не наоборот. Данная закономерность отражает общее правило: когда последовательность терминов упорядочена, согласно их подчиненности, отношение между объемом и содержанием является обратным.

Однако данная формулировка отношения между объемом и содержанием не является точной. Во-первых, не следует понимать «обратное отношение» в строгом количественном смысле, поскольку добавление одного-единственного признака к содержанию термина в разных случаях сказывается по-разному на объеме. Так, объем термина «человек» сокращается гораздо значительнее при добавлении к его содержанию признака «проживший сто лет», чем при добавлении признака «здоровый». Во-вторых, изменениям в содержании могут вообще не сопутствовать изменения в объеме. Так, объем термина «университетский профессор» равен объему термина «университетский профессор старше пяти лет». Более того, следует иметь в виду, что обратное отношение между конвенциональным содержанием термина и его денотацией должно рассматриваться лишь для заданной предметной области (универсума рассуждения). Поэтому правило обратного отношения следует сформулировать следующим образом: если последовательность терминов упорядочена согласно увеличению содержания, то денотация терминов последовательности будет либо уменьшаться, либо останется без изменения.

Форма категорических суждений

Согласно традиционной логической теории, все суждения можно разложить на субъект, предикат и связку, как с точки зрения их содержания, так и с точки зрения их объема. С одной стороны, может показаться, что в суждении «все вишни являются сладкими» признак «являться сладким» относится к группе признаков, определяющих природу вишен. С другой стороны, данное суждение означает, что объекты, называемые вишнями, включены в денотацию термина «сладкий»