Таким образом, выделим первый важный аспект регрессионного анализа: он не позволяет устанавливать связь каузальную, понимаемую как связь генетическая между явлениями и процессами. Например, установить факт того, что наличие состояния фрустрации всегда приведет к агрессии.
Тогда возникает вопрос: какую же связь позволяет находить регрессионный анализ?
В ответе на этот вопрос дадим характеристику той связи, с которой имеет дело психолог-исследователь после проведения эмпирического исследования, когда выполнены все требования к технологиям сбора эмпирических результатов и соблюдены требования к объему статистической выборки.
Если выполнены вышеназванные условия (соблюдены требования к технологиям сбора эмпирических результатов и к объему статистической выборки) и полученные эмпирические результаты нанесены на двумерный график, то мы столкнемся с тем, что всегда одним и тем же значениям одной переменной будут соответствовать разные значения другой переменной.
На рис. 1.1 представлены два возможных варианта графического представления такой ситуации.
Связь, которая представлена на рис. 1.1, называется вероятностной (стохастической).
Стохастическая связь – связь, при которой каждому значению одной переменной значение других переменных соответствует не однозначно, а с определенной долей вероятности.
Рис. 1.1. Варианты диаграмм совместного рассеивания точек (каждая точка – испытуемый) в двумерном исследовании
Количественным выражением такого вида связи является коэффициент корреляции.
При стохастической связи переменные как случайные величины заданы совместным распределением вероятностей величины.
Не вдаваясь в объяснение статистических технологий решения задачи о нахождении количественного выражения данного вида связи (коэффициента корреляции)3, охарактеризуем основной недостаток стохастической связи для объяснительного (научного) подхода в исследовательской деятельности.
Он заключается в том, что у нас нет никакой возможности даже с определенной долей вероятности спрогнозировать конкретную количественную выраженность одной переменной при условии, что вторая переменная будет также принимать конкретные количественные значения.
Для того чтобы решить эту задачу, необходимо перейти к другому виду выражения этой связи – математическому, позволяющему отражать эту связь в виде определенной математической функции (функциональная связь).